編號:

165

國立成功大學一○○學年度碩士班招生考試試題

共 3 頁 第 / 頁

系所組別: 奈米科技暨微系統工程研究所

考試科目: 電子電路學

考試日期:0219,節次:1

※ 考生請注意:本試題 □可 ☑不可 使用計算機

1. (15%)

For the circuit shown in Fig.1, evaluate the following (β =100):

- (a) The input differential resistance Rid.
- (b) The overall differential voltage gain v_0 / v_{sig} (neglect the effect of r_0)
- (c) The worst-case common-mode gain if the two collector resistances are accurate to within ±1%.
- (d)The CMRR, in dB
- (e) The input common-mode resistance (assuming that the Early voltage $V_A=100V$).

2. (15%)

The network in Fig.2 has $i(t) = 10\cos(50000t)$ mA. Find the steady-state voltages v(t), $v_L(t)$, and $v_C(t)$.

3. (20%)

With the adjustment of the resistor R_L in the circuit of Fig.3, the maximum power delivered to R_L can be achieved. Please calculate the maximum power transferred to R_L?

4. (20%)

A differential to single-ended amplifier is constructed as shown in Fig.4(a). The amplifier

編號:

165

國立成功大學一○○學年度碩士班招生考試試題

共 3 頁 第2頁

系所組別: 奈米科技暨微系統工程研究所

考試科目: 電子電路學

考試日期:0219,節次:1

※ 考生請注意:本試題 □可 四不可 使用計算機

incorporates Wilson current mirror as active loads. Assuming all of the transistors are in saturation, $\mu_n C_{o\chi} = 80\mu A/V^2$, $\mu_p C_{o\chi} = 30\mu A/V^2$, $|V_T| = 0.8V$ for both NMOS and PMOS, (W/L) MI = (W/L) M2 = 320/0.6, (W/L) M3 = (W/L) M4 = (W/L) M5 = (W/L) M6 = 20/0.9, (W/L) M7 = 80/0.6, (W/L) M8 = 160/0.6. Neglect channel length modulation effect.

- (a) What kind of feedback mechanism is applied in the Wilson current mirror? (shunt-shunt, series-series, shunt series, series- shunt)
- (b) Find out the input common mode ranges V_{icm(max)}, √_{icm(min)} of this amplifier.
- (c) Consider the circuit shown in Fig.4(b). Assume that $(W/L)_{M3} = (W/L)_{M6} = 21/0.9$, $(W/L)_{M4} = (W/L)_{M5} = 19/0.9$, and the other derives' sizes remain unchanged. If V_i =2.5V, find V_0 . (The OP's input offset voltage must be taken into account).
- (d) Follow (c) and neglect all the parasitic capacitances of MOSFETs. If V_i is a rising step from 2V to 3V, find the slew rate of V_o . If V_i is a falling step from 3V to 2V, find the slew rate of V_o .

編號:

165

國立成功大學一○○學年度碩士班招生考試試題

共 3 頁,第3頁

系所組別: 奈米科技暨微系統工程研究所

考試科目: 電子電路學

考試日期:0219,節次:1

※ 考生請注意:本試題 □可 □不可 使用計算機

5. (15%)

Please find the Thévenin and Norton equivalent circuits of the network of Fig.5 at terminals a-b.

6. (15%)

In the circuit as shown in Fig.6, the junction diode D_1 can be modeled by a forward constant voltage drop of V_r =0.7V; the Zener diode D_2 can be modeled by an ideal Zener voltage of V_z =3.3V; the op-amp is ideal; the BJT has parameters β =50, $V_{BE(on)}$ =0.7V, V_A = ∞ , $V_{CE(sat)}$ =0.5V. The resistors are R_1 = R_2 = R_3 = R_4 = R_5 =1k Ω , R_6 =50 Ω . The supply voltage is V_{CC} =12V

- (a) Find the voltage V_I for V_{in} =-10V, -5V, 5V, and 10V.
- (b) Derive the expression for V_{out} as function of V_{I} .
- (c) Find the value for Rin and Rout.

Fig.6