共 / 頁,第 頁

國立成功大學九十六學年度碩士班招生考試試題

編號: 207 系所: 奈米科技暨微系統工程研究所

科目:電磁學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

1. (1) Explain the meaning of gradient Φ (i.e., $\nabla \Phi$), where Φ is a scalar field. (10%)

- (2) Given $\Phi = xyz^2 + x^2y^3$, find the directional derivative $d\Phi/dl$ in the direction 1 $\mathbf{a}_x + 2 \mathbf{a}_y + 2 \mathbf{a}_z$ at point (1,1,2). (10%)
- 2. For a coaxial cable, inner conductor radius a, outer conductor radius b (b>a), cable length L, the homogeneous dielectric with permittivity ε and conductivity σ is filled between two conductors. Assume that inner and outer conductors carry +Q and -Q, respectively. Find (1) the capacitance of the coaxial cable and (2) the leakage resistance between two conductors. (20%)
- 3. A circular loop located at $x^2+y^2=16$, z=0 carries 5 Ampere current along a_{ϕ} . Determine magnetic field intensity **H** at points (0, 0, 3) and (0, 0, 3). Using cylindrical coordinates (ρ, ϕ, z) to solve it. (20%)
- 4. Find the Laplacian of the scalar fields shown below. (20%)
 - $(1) V=e^{-x}\sin(y)\sinh(z).$
 - (2) W= $5r^2\sin(\theta)\cos^2(\phi)$.
 - By definition, spherical coordinates (r, θ, ϕ) and cylindrical coordinates (ρ, ϕ, z) .
- 5. A 2-meter-long transmission line operates at $\omega=10^6$ rad/s with $\alpha=1$ rad/m and $\beta=2$ rad/s, $Z_0=20+j10$ Ω . The line is connected to an input source of 2 $\angle 30^\circ$ V with source resistance 40Ω and terminated by a load of $10+j20\Omega$. Find (1) the input impedance, (2) the sending-end current, (3) the current at one fourth of the line. (20%)