編號: 211 系所: 奈米科技暨微系統工程研究所 科目: 應用數學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

1. Hermite's differential equation has the form

$$y'' - 2xy' + 2\mu y = 0, (1a)$$

where μ is a given number. The Hermite equation appears in the description of the wave-function of the harmonic oscillator. Any solution of this equation is called a Hermite function.

(a) (10%) Find two linearly independent solutions in the form of a power series

$$y(x) = \sum_{m=0}^{\infty} a_m x^m \tag{1b}$$

by verifying that a_m satisfies the following recurrence relation

$$a_{m+2} = -\frac{2(\mu - m)}{(m+1)(m+2)} a_m \tag{1c}$$

- (b) (5%) Express the general solution in terms of the two free parameters a_0 and a_1 .
- (c) (10%) If $\mu = n$ is a non-negative integer, show that the Hermite function y(x) is reduced to a polynomial denoted by $y = H_n(x)$. Find the Hermite polynomial $H_n(x)$ for n = 0, 1, 2, 3, 4.
- 2. In quantum mechanics, each physical observable is accompanied by an operator. The two basic quantum-mechanical operators are those corresponding to position (x, y, z) and momentum (p_x, p_y, p_z) . One prescription for making the transition from classical to quantum mechanics is to perform the following replacement:

$$(x,y,z) \rightarrow (\hat{x},\hat{y},\hat{z}), (p_x,p_y,p_z) \rightarrow (\hat{p}_x,\hat{p}_y,\hat{p}_z) = (\frac{\hbar}{i}\frac{\partial}{\partial x},\frac{\hbar}{i}\frac{\partial}{\partial y},\frac{\hbar}{i}\frac{\partial}{\partial z})$$
 (2a)

where \hat{x} is a multiplicative operator defined by $\hat{x}f = xf$, and similarly, $\hat{y}f = yf$ and $\hat{z}f = zf$; \hbar is the Planck constant and i is the imaginary number $\sqrt{-1}$.

(a) (5%)Making the above substitution rules, find the corresponding quantum-mechanical operators \hat{L}_x , \hat{L}_y , and \hat{L}_z for the following components of classical angular momentum:

$$L_x = yp_z - zp_y, \quad L_y = zp_x - xp_z, \quad L_z = xp_y - yp_x.$$
 (2b)

(b) (15%)The commutator $[\widehat{A},\widehat{B}]$ of two operator \widehat{A} and \widehat{B} is defined by

$$[\widehat{A}, \widehat{B}] = \widehat{A}\widehat{B} - \widehat{B}\widehat{A}. \tag{2c}$$

Using the results of (a), show

$$[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z, \quad [\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x, \quad [\hat{L}_z, \hat{L}_x] = i\hbar \hat{L}_y$$
 (2d)

3. (15%) Continuing Problem 2, two operator \widehat{A} and \widehat{B} are said to commute if their commutator is zero, i.e., $[\widehat{A}, \widehat{B}] = 0$. Consider the following eigenvalue problems:

$$\hat{A}\psi_A = \lambda_A \psi_A, \quad \hat{B}\psi_B = \lambda_B \psi_B$$
 (3a)

where ψ_A and λ_A are the eigenfunction and eigenvalue of \widehat{A} ; while ψ_B and λ_B are the

國立成功大學九十六學年度碩士班招生考試試題

編號: 211 系所: 奈米科技暨微系統工程研究所

科目:應用數學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

eigenfunction and eigenvalue of \hat{B} . Show that if \hat{A} and \hat{B} are commuting, then they share the same eigenfunction, i.e., $\psi_A = \psi_B$. Hint: $[\hat{A}, \hat{B}] = 0$ means $\hat{A}\hat{B} = \hat{B}\hat{A}$.

4. A complex function f(z) is said to be analytic in a domain R, if it is single-valued and differentiable at all points in R. The differentiability of f(z) means that its derivative

$$f'(z) = \lim_{\Delta z \to 0} \left[\frac{f(z + \Delta z) - f(z)}{\Delta z} \right]$$
 (4a)

exists and is unique, i.e., its value does not depend upon the direction from which Δz approaches to zero. If we let f(z) = u(x, y) + iv(x, y) and $\Delta z = \Delta x + i\Delta y$, then we have

$$f(z + \Delta z) = u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y), \tag{4b}$$

and the limit in Eq.(4a) is given by

$$\lim_{\Delta x, \Delta y \to 0} \left[\frac{u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta y) - u(x, y) - iv(x, y)}{\Delta x + i\Delta y} \right]. \tag{4c}$$

- (a) (5%) By assuming $\Delta z \to 0$ along the real axis, i.e., $\Delta z = \Delta x$ and $\Delta y = 0$, evaluate the limit in Eq.(4c).
- (b) (5%) By assuming $\Delta z \to 0$ along the imaginary axis, i.e., $\Delta z = i\Delta y$ and $\Delta x = 0$, evaluate again the limit in Eq.(4c).
- (c) (5%) The differentiability of f(z) requires that the results obtained in (a) and (b) must be equal. Show that the required condition is just the Cauchy-Riemann relation

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$
 (4d)

(d) (5%) Since x and y are related to z and its complex conjugate z^* by

$$x = \frac{1}{2}(z + z^*), \quad y = \frac{1}{2i}(z - z^*),$$
 (4e)

we may formally regard any function f = u + iv as a function of z and z^* , rather than x and y. If we do this and examine $\partial f / \partial z^*$, we obtain

$$\frac{\partial f}{\partial z^*} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z^*} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z^*}.$$
 (4f)

Show that if f is analytic, then f cannot be a function of z^* , i.e., $\partial f/\partial z^* = 0$. Hint: Apply Eq.(4e) to Eq.(4f) and use the Cauchy-Riemann condition (4d).

5. (20%) In the definition of an analytic function, one of the conditions imposed was that the function is singled-valued. A multi-valued function can still be treated as analytic if its principle value is taken. In polar form, a complex number z can be written as

$$z = re^{i\theta} = re^{i(\theta + 2n\pi)}, \quad n \in \mathbb{Z}, \quad -\pi < \theta \le \pi$$
 (5a)

Taking the logarithm of both sides, we find

$$\operatorname{Ln}(z) = \ln(r) + i(\theta + 2n\pi). \tag{5b}$$

Hence, the logarithm function Ln(z) is multi-valued, depending on the value of n. The principle value of Ln(z) is denoted by ln(z), which is evaluated at n = 0, i.e.,

$$\ln(z) = \ln(r) + i\theta, \quad -\pi < \theta \le \pi. \tag{5c}$$

圕	핛	献	Σħ	大	墨	h .	+	<u>بر</u>	墨	年	度	碹	+	班	权	牛	老	盐	試力	頢
22		$\mu_{\mathbf{X}}$	73	\mathcal{I}		74		/\		_	/王	. "71	_	~	70	ᆂ	-7	~		Œ

共 3 頁,第3頁

編號:

211 系所:奈米科技暨微系統工程研究所

科目:應用數學

本試題是否可以使用計算機: 如可使用 , □不可使用 (請命題老師勾選)

According to the above definition, find the all possible values of Ln(-i) and its principle value ln(-i).