系所組別 奈米科技暨微系統工程研究所 考試科目 工程數學

考試日期:0307·箭次:3

(1a)

(2a)

※ 考生請注意 本試題 □可 ☑不可 使用計算機

(a) (10%) The Laplace transform of y(t) is defined by

 $L(y(t)) = Y(s) = \int_{-\infty}^{\infty} e^{-st}y(t)dt$

Show that the Laplace transform of ty(t) is then given by L(ty(t)) = -dY(s)/ds

- (b) (5%) Use the result of (a) to find the Laplace transform L(tŷ)
 (c) (5%) Use the result of (a) to find the Laplace transform L(tŷ)
- Consider the following second-order ODE with variable coefficients.

2. Consider the following second-order ODE with variable coefficients
$$t\ddot{u} + (1-t)\dot{u} + u = 0, \quad v(0) = 0$$

You are asked to solve this equation by Laplace transform.

(a) (10%) By applying the results of problem 1, show that the above differential equation can be transformed to the following first-order ODE

$$(s - s^2)\frac{dY(s)}{ds} + (2 - s)Y(s) = 0$$
 (2b)

(b) (5%) Find a solution Y(s) to Eq.(2b). Hint: verify that your answer is given by

$$Y(s) = \frac{s-1}{s^2} \tag{2c}$$

(c) (5%) Find the inverse Laplace transform L⁻¹(Y(s)) to give the solution y(t) to Eq.(2a).

(a) (10%) Given a 2×2 matrix

$$A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$
(3a)

Find the eigenvalues and eigenvectors of the matrix A

- (b) (10%) For the matrix A given by Eq.(3a), find a matrix X such that X⁻¹AX is diagonal.
- 4. Consider the following line integral

$$\int_{c} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{c} (F_{i}dx + F_{2}dy + F_{3}dz) \qquad (4a)$$

- (a) (10%) If F is the gradient of some function f, i.e., F = ∇f, show that the above line integral is path independent.
- (b) (10%) Apply the above result to evaluate the following line integral

$$I = \int_{\mathcal{C}} \left(3x^2dx + 2yzdy + y^2dz\right) \tag{4b}$$

from point (0,1,2) to point (1,-1,7)

5. (a) (15%) Find the Fourier series expansion of the following periodic function

編號	162	立成功大學九十九學年度碩士班打	23生考試試題	共2頁	第2頁
系所組別	奈米科技暨徽系統工	程研究所			
考試科目	工程數學	,	考	试日期:0307	節次:3
※ 考生記	注意 本試題 □可	不可 使用計算機			
	$f(x) = \begin{cases} -k, \\ k, \end{cases}$	$-\pi < x < 0$ $0 < x < \pi$ and $f(x + 2\pi)$	f(x) = f(x)	(5	ia)
(b)	5%) Apply the above I	ourier series expansion to show t	he following identity		
		$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$		(5	b)