1. (20%) The following eigen value problem is given as $\nabla^2 \Phi(x, y) = 0$

in the domain $0 \le x \le \pi$ and $-h \le y \le 0$, where h is positive constant, with the boundary conditions:

$$\frac{\partial \Phi}{\partial x} = 0$$
 for $x = 0$, $-h \le y \le 0$

$$x = \pi$$
, $-h \le y \le 0$

$$\frac{\partial \Phi}{\partial y} = 0 \qquad \text{for } 0 \le x \le \pi \; , \; \; y = -h$$

$$\frac{\partial \Phi}{\partial y} = \lambda \Phi$$
 for $0 \le x \le \pi$, $y = 0$.

- (1) (14%) Find all the eigen values λ_n and the corresponding eigen functions Φ_n in terms of h.
- (2) (6%) Find λ_n in the limits $h \to 0$, and also $h \to \infty$.
- 2. (20%) For a function f(z) is given as:

$$f(z) = \frac{1}{z^2 + z + 1} \ln(\frac{z - i}{z + i})$$

- (1) (10%) Identify all singularities of f(z), and specify their types.
- (2) (10%) Using $z i = r_1 e^{i\theta_1}$, $z + i = r_2 e^{i\theta_2}$. Is f(z) single valued? Why and prove it.
- 3. (20%) Solve for y(t) with $y(t) = u(t) + \int_0^t e^{-(t-\tau)} y(\tau) d\tau$ by using the Laplace Transform, where $u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$.

- 4. (a) (10%) Verify that 2x ∂F/∂x t ∂F/∂t = 0 has a solution F(x,t) = f(x^αt), where f is arbitrary. Find the value of constant α.
 (b) (10%) Solve this equation by separation of variables. By using superposition, obtain again the result above for arbitrary f. How is the proper α obtained in this approach?
- 5. (1) (10%) The nonlinear system $u_t + uu_x + gy_x = 0$

 $y_t + uy_x + yu_x = 0$ has the solution $u = u_0$, $y = y_0$ (constants).

Linearize the system by introducing the small perturbations:

 $u = u_0 + \varepsilon \omega(x, t)$, $y = y_0 + \varepsilon \eta(x, t)$ and neglect ε^2 and higher order terms. Find this linearized system.

(2) (10%) Following (1) above by eliminating η from the system, find a second order linear differential equation for ω alone. Similarly, get an equation for η alone and compare the two equations.