- 1. (10) Calculate the pH of a 5.0 M H₃PO₄ solution and determine equilibrium concentrations of the species H₃PO₄, H₂PO₄⁻, H₂PO₄²⁻, PO₄³⁻. - 2. (10) Calculate the pH of a buffered solution containing 3.0 x 10^{-4} M HOCl (Ka = 3.5×10^{-8}) and 1.0×10^{-4} M NaOCl. - 3. (12) What are differences between thermodynamics and kinetics? What parameters can be used to determine the equilibrium position and the reaction rate of a chemical reaction? - 4. (9) Describe the first, the second, and the third law of thermodynamics. - 5. (10) Describe the differences between galvanic cell and electrolytic cell? - (12) Describe the differences between molecular solid and ionic solid. Provide one example for each. - 7. (10) Draw all resonance structures and select the most stable one for SCN. - 8. (12) Use molecular orbital (MO) theory to describe the bonding and stability of H_2^{2-} and H_2^{+} ions. - (15) Draw the structural isomers for the alkane C₆H₁₄ and give the systematic name for each one.