- Derive curl A (∇×A) by using the line integral in the perpendicular coordinates (10%), express ∇×A in the cylindrical coordinates (10%), Explain the Stoke's theorem (10%).
- Derive the capacitance of a coaxial cylinder (L, length; a, inner radius; b, outer radius), which is filled with a homogeneous dielectric with permittivity ε.
 Assume the inner and outer conductors carry +Q and -Q, respectively. (20%)
- 3. A charged particle of mass 2kg and charge 4 Coulomb starts at point (1,1,0) with initial velocity (3 a_x + 4 a_z m/s) in an electrical filed (6 a_x + 5 a_y V/m). At time t=2 second, determine (a) the acceleration of the particle, (b) its velocity, (c) its kinetic energy, (d) its position. (20%)
- In free space, E=10cos(ωt-20x) a_y V/m. Calculate (a) displacement current density J_d, (b) magnetic field density H. (10%)
- 5. In a lossless medium for which η =40 π , μ_r =2, and **H**=-0.2cos(ω t-z) $\mathbf{a_x}$ +sin(ω t-z) $\mathbf{a_y}$ A/m, calculate ε_r , ω , and **E**. (20%) [η =(μ / ε)^{0.5}, β = ω (μ ε)^{0.5}, ε ₀=(1/36 π)x10⁻⁹, μ ₀=4 π x10⁻⁷]