編號: 7 301 系所:微機電系統工程研究所

科目:電磁學

- 1. Explain the meaning of curl A (i.e., $\nabla \times A$) and divergence A (i.e., $\nabla \cdot A$). (10%) Explain $\nabla \cdot (\nabla \times A)=0$ and $\nabla \times \nabla A=0$, where A is a scalar and A is a vector (10%). Do not derive the equation, explain them with the meaning of ∇A , $\nabla \times A$, $\nabla \cdot A$ themselves.
- 2. $A=5e^{-2z}(\rho a_{\rho}+a_{z})$, determine the flux of A out of the surface defined by $\rho=1$, $0 \le z \le 1$, $0 \le \phi \le 2\pi$, where a_{ρ} and a_{z} are unit vectors. (20%)
- J=r⁻³(2cosθ a_r+ sinθ a_θ) A/m², where J current density; A, ampere; m, meter. Calculate the current passing through (1) a hemispherical shell of radius 10 cm (10%) and (2) a spherical shell of radius 5 cm (10%).
- 4. A conducting bar can slide freely over two conducting rails shown in the following figure. Calculate the induced voltage in the bar: (1) if the bar is stationed at x=5cm and B=2cos10⁵t a_z mWb/m² (8%); (2) if the bar slides at a velocity u=10 a_x m/s and B=2 a_z mWb/m² (7%); (3) if the bar slides at a velocity u=10 a_x m/s and B=2cos(10⁵t-x) a_z mWb/m² (5%). Note that Wb is Weber.
- 5. A certain transmission line operates at $\omega=10^7$ rad/s with $\alpha=2$ Np/m, $\beta=1$ rad/m, and $Z_o=50+j20$ Ω and 2 m long. If the line is connected to a source of $V_s=4 \angle 0^\circ V$ with $Z_s=50$ Ω and terminated by a load of 10+j20 Ω , determine (1) the input impedance (8%), (2) the sending-end current (7%), (3) the current at the middle of the line (5%). tanh(x±jy)=[(sinh 2x)/(cosh 2x + cos 2y)] \pm j[(sin 2y)/(cosh 2x + cos 2y)]

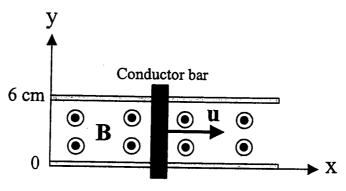


Figure of Problem 4