編號	:E	92 86	系所	:生物科					學年度碩科目:分	士班招生 子生物學	考試試	Đ.	共	6 頁·
	I.	單選	題:	(毎題	2分	,共	50 分)						
	1.	What	is the	e percen	tage of	f huma	an geno	me cod	ling for pr	oteins?				
		A.	1											
		B.	10											
		C.	100											
		D.	50											
	2.	What	is the	e anti-se	nse RN	VA for	a temp	olate Di	NA of ATC	GCCGTTA	.?			
		A.	ATG	CCGT	ĨΑ.									
		B.	AUC	GCCGU	UA									
		C.	TAC	GGCA	ΑT									
		D.	UAC	CGGCA	AU						•			
	3.	The g	enom	ne of E.	coli ha	s abou	ıt	nuc	cleic acids	:?	•			
		A.	10^{6}											
		B.	10^{7}											,
		C.	10^8											
		D.	10 ⁹											
	4.	Which	h spe	cies doe	s not c	ontain	an inte	errupted	l gene?					
		A.	huma	an										
		B.	fly											
		C	yeast	t										
		D.	E. co	oli										
	5.				wing b	ase ch	anges i	s happe	ned in the	spontane	ous dean	nination?	,	
			$C \rightarrow$											
			$T \rightarrow$											
		C.	G →	U						•				
		D.	$A \rightarrow$	U										
	6.	Which	h sub	unit is n	ot a co	mpone	ent in th	ne core	enzyme o	of DNA po	lymerase	e III?		
		A.	α											
			β					•						
			3											
		D.	θ											
	7.	Whic	h stat	tement i	s not c	orrect	regardi	ng tran	sposon?					
		Δ	Ĭt 1191	ially end	rodes a	tranci	noace							

(背面仍有題目,請繼續作答)

It usually has terminal repeats at the ends.

It is only present in bacteria.

It can promote the arrangement of the genome.

B.

C. D.

92 編號:で 86

系所:生物科技研究所甲組

科目:分子生物學

- 8. Which statement is not correct about nucleosome?
 - A. Nucleosome consists of ~200 bp of DNA and an octamer of histone proteins, which is organized into a bead-like structure.
 - B. The size of RNA polymerase (~500 kD) is larger than nucleosome (~300 kD).
 - C. Nucleosome disassembles when transcription proceeds.
 - D. Nucleosome relocates to a new position after transcription.
- 9. Which statement is correct regarding excision-repair systems in E. coli?
 - A. It requires an enzyme called photolyase.
 - B. It requires enzymes of endonuclase, exonuclease, polymerase and ligase.
 - C. The *uvr* A, B, C genes encode the subunits of photolyase.
 - D. This system can only repair intrastrand pyrimidine dimer.
- 10. Which statement is not correct regarding DNA recombination?
 - A. DNA recombination is initiated by a double-strand break in DNA.
 - B. DNA recombination requires topological manipulation of DNA.
 - C. Hotspots of DNA recombination are the sites where double-strand DNA breaks are initiated.
 - D. In E. coli, RecA is the only enzyme required for DNA recombination.
- 11. Which statement is true regarding allelic exclusion in B cell for antibody production?
 - A. The genes of homologous chromosomes are expressed in a single cell; the alleles on the other cells are not expressed.
 - B. The genes of only one of the homologous chromosomes are expressed; the alleles on the other chromosome are not expressed in the same cells.
 - C. The genes of homologous chromosomes are expressed in a B cell; the alleles on the other T cells are not expressed.
 - D. The genes of homologous chromosomes are expressed in a T cell; the alleles on the other B cells are not expressed.
- 12. Which is not the possible mechanism in the regulation of transposition in transposon?
 - A. DNA methylation.
 - B. RNA splicing.
 - C. Selection pressure for antibiotic resistance.
 - D. Target gene sequence.

タ2 編號: ビ86

系所:生物科技研究所甲組

科目:分子生物學

- 13. Which function is played by chaperones during protein synthesis?
 - A. Protein folding
 - B. Protein glycosylation
 - C. Protein degradation
 - D. Protein phosphorylation
- 14. The phases of the cell cycle are controlled by discrete events that happen at G1, S phase, and mitosis. Which following stage is not in the cell cycle progression?
 - A. G2 phase
 - B. G0 phase
 - C. M phase
 - D. None of the above
- 15. Which function is played by proteasome system in eukaryotic cells?
 - A. Protein degradation
 - B. Lipid degradation
 - C. Protein dephosphorylation
 - D. mRNA cleavage
- 16. Which kinase is a cytosolic enzyme that phosphorylates targeted proteins on either tyrosine or serine/threonine?
 - A. Tyrosine kinase
 - B. Serine/threonine kinase
 - C. Dual specificity kinase
 - D. All of the above
- 17. What kind of changes can activate protooncogenes in human genome?
 - A. Insertion
 - B. Translocation
 - C. Amplification
 - D. All of the above
- 18. Which function is never found for G protein?
 - A stimulate adenylyl cyclase by Gs
 - B. inhibit adenylate cyclase by Gi
 - C. close Ca²⁺ channels by Go
 - D. inhibit cGMP phosphodiesterase by Gt

編號: 七86 系所: 生物科技研究所甲組

科目:分子生物學

- 19. Which statement about the mRNA 5' cap is FALSE?
 - A. Contains a methylated guanosine residue.
 - B. Interacts with fMet-tRNA during translational initiation.
 - C. Ribosomal RNAs do not have caps.
 - D. Aids in ribosome-mRNA association.
- 20. Which of the following is TRUE for eukaryotic gene expression?
 - A. Enhancers only work when they are located immediately upstream of the promoter.
 - B. The promoters of actively regulated genes often lack the TATA box.
 - C. CG islands near housekeeping genes interact with enhancers.
 - D. Enhancers may be located downstream of the genes which they regulate.
- 21. A strain of *E. coli* has a mutation eliminating the 3' to 5' exonuclease activity of DNA polymerase III. This strain is expected to show ____.
 - A. an increased mutation frequency
 - B. a decreased mutation frequency
 - C. an inability to join Okazaki fragments together
 - D. leading strand synthesis only
- 22. Which of the following is TRUE for cDNA?
 - A. It represents an exact copy of a eukaryotic gene.
 - B. It contains the upstream regulatory sequences for a eukaryotic gene.
 - C. It contains a poly A sequence on the 3' end of its sense strand.
 - D. It is a normal intermediate in the splicing of introns.
- 23. Which of the following describes the function of factor rho?
 - A. rho directs catabolite repressor protein to the promoter region.
 - B. rho increases the rate of elongation of the growing RNA chain.
 - C. rho is required for correct termination of transcription of some mRNA's.
 - D. rho helps RNA polymerase bind to the promoter region.
- 24. How are DNA synthesis and RNA synthesis different?
 - A. Release pyrophosphate as a reaction product.
 - B. Synthesis proceeds in the 5' to 3' direction.
 - C. Proofreading helps eliminate errors.
 - D. First nucleotides incorporated are RNA.

編號: 686

系所:生物科技研究所甲組

科目:分子生物學

- 25. Which of the following could be a result of a mutation at a prokaryotic promoter site?
 - A. Inability of the inducer molecule to bind to the repressor protein.
 - B. All the proteins of such an operon could be synthesized but would be structurally altered.
 - C. Failure to initiate transcription of the operon.
 - D. Only the first gene in the operon would be transcribed.

II、簡答題: (每題 5 分, 共 50 分)

- 1. Please draw and explain how the termination of replication is caused in E. coli genome.
- 2. Please use one model to explain the rolling circle replication. Draw and briefly describe it.
- 3. What are common and difference between retrovirus and retrotransposon in terms of their reproductive cycle?
- 4. What are the minimum features required for existence as a chromosome? Why?
- 5. How can gene arrangement be used to control gene expression in nature? Please give an example, and briefly describe it.
- 6. What is the function of a stop codon during protein translation? How many stop codons have been founded?
- 7. How do proteins enter and leave membranes after protein synthesis, please describe them in detail?
- 8. What is programmed cell death? Please describe how the Bcl-2 family members regulate the apoptotic cell death?

(背面仍有題目,請繼續作答)

編號: 5 86

系所:生物科技研究所甲組

科目:分子生物學

9. You have managed to isolate a Group I self-splicing intron. You decide to run a time course for the *in vitro* splicing reaction. Draw the bands that would appear on your gel over time as the self-splicing reaction progresses. Please draw the nature of the products represented by each band next to the gel. Don't use words except for labels.

each band next to the get. Don't use words except for it							
Fig. 1: Your Gel							

Draw the products here

10. You are now rotating in a transcription lab and once again studying a new species of bacteria called NEWA. Luckily for you, your rotation advisor has already purified an *E. coli*-like RNA polymerase. How can he assay for RNA polymerase activity? Since this is a novel species, what assumption did he have to make in order for him to assume that his assay would work?