國立成功大學九十四學年度碩士班招生考試試題

編號 :G 90

系所:生物科技研究所甲組, 2 组

科目:普通物理

一.單選題(共二十五題,每題二分)

- The displacement of a moving object can be obtained from:
 - (a) the slope of an acceleration-time graph
 - (b) the slope of a velocity-time graph
 - (c) the area under an acceleration-time graph
 - (d) the area under a velocity-time graph
- 2. Vectors \vec{A} and \vec{B} each have magnitude L. If their tails are at the same point, the angle between them is 30°. The magnitude of $\vec{A} \times \vec{B}$ is
 - (a) $L^2/2$
 - (b) L^2
 - (c) $\sqrt{3}L^2/2$
 - (d) $2L^2$
- 3. A 90-kg man stands in an elevator that has a downward acceleration of $1.4m/s^2$. The force exerted by him on the floor is about:
 - (a) 90 N
 - (b) 760 N
 - (c) 880 N
 - (d) zero
- 4. A kilowatt-hour is a unit of:
 - (a) power
 - (b) energy/time
 - (c) work
 - (d) power/time
- 5. When a thin uniform stick of mass M and length L is pivoted about its midpoint, its rotational inertia is $ML^2/12$. When pivoted about a parallel axis through one end, its rotational inertia is:
 - (a) $ML^2/12$
 - (b) $ML^2/6$
 - (c) $ML^2/3$
 - (d) $7ML^2/12$
- 6. An astronaut in an orbiting spacecraft feels "weight-less" because she:
 - (a) is beyond the range of gravity
 - (b) is pulled outwards by centrifugal force
 - (c) has no acceleration
 - (d) has the same acceleration as the spacecraft
- 7. A wooden board floats in fresh water with 60% of its volume under water. The density of the wood in g/cm^3 is:
 - (a) 0.4

- (b) less than 0.4
- (c) 0.6
- (d) more than 0.6
- 8. A 0.25-kg block oscillates on the end of the spring with a spring constant of 200 N/m. If the system has an energy of 6.0 Joules, then the maximum speed of the block is:
 - (a) 0.06 m/s
 - (b) 0.17 m/s
 - (c) 4.9 m/s
 - (d) 6.9 m/s
- 9. The displacement of a string is given by

$$y(x,t) = y_0 \sin(kx + \omega t) .$$

The speed of the wave is:

- (a) $2\pi k/\omega$
- (b) ω/k
- (c) $2\pi/k$
- (d) $k/2\pi$
- 10. The heat capacity of object B is twice that of object A. Initially A is at 300 K and B is at 450 K. They are placed in thermal contact and the combination is isolated. The final temperature of both objects is:
 - (a) 200 K
 - (b) 300 K
 - (c) 400 K
 - (d) 450 K
- 11. An ideal gas expands into a vacuum in a rigid vessel. As a result there is:
 - (a) a change in entropy
 - (b) an increase of pressure
 - (c) a change in temperature
 - (d) a decrease of internal energy
- 12. A magnetic field exerts a force on a charged particle:
 - (a) always
 - (b) never
 - (c) if the particle is moving across the field lines
 - (d) if the particle is moving along the field lines
- 13. A point source emits electromagnetic energy at a rate of 100 W. The intensity 10 meters away from the source is:
 - (a) $10W/m^2$
 - (b) $1W/m^2$
 - (c) $0.024W/m^2$

編號: 4 90

系所:生物科技研究所甲組

科目:普通物理

- (d) $0.080W/m^2$
- 14. A 5.5×10^{-8} C charge is fixed at the origin. A -2.3×10^{-8} C charge is moved from x = 3.5cm on the x axis to y = 3.5cm on the y axis. The change in the potential energy of the two-change system is:
 - (a) $3.2 \times 10^{-4} \text{ J}$
 - (b) $-3.2 \times 10^{-4} \text{ J}$
 - (c) $9.3 \times 10^{-3} \text{ J}$
 - (d) zero
- 15. A ladder leans against a wall (See FIG. 1). If the ladder is not to slip, which one of the following must be true.
 - (a) The coefficient of friction between the ladder and the wall must not be zero
 - (b) The coefficient of friction between the ladder and the floor must not be zero
 - (c) Both (a) and (b)
 - (d) Either (a) or (b)

FIG. 1. A ladder leaning against a wall.

- 16. The formation of ice from water is accompanied by:
 - (a) absorption of heat
 - (b) temperature increase
 - (c) decrease in volume
 - (d) temperature decrease
- 17. According to the kinetic theory of gases, the pressure of a gas is due to:
 - (a) change of kinetic energy of molecules as they strike the wall
 - (b) change of momentum of molecules as they strike the wall
 - (c) average kinetic energy of the molecules
 - (d) force of repulsion between the molecules
- 18. According to the second law of thermodynamics:
 - (a) heat cannot be completely converted to work
 - (b) work cannot be completely to heat
 - (c) for all cyclic processes we have dQ/T < 0
 - (d) the reason all heat engine efficiencies are less than 100% is friction, which is unavoidable

- 19. A hollow metal sphere is charged to a potential V. The potential at its center is:
 - (a) V
 - (b) 0
 - (c) -V
 - (d) 2V
- 20. Pulling the plates of an isolated charged capacitor apart:
 - (a) increases the capacitance
 - (b) increases the potential difference
 - (c) does not affect the potential difference
 - (d) does not affect the capacitance
- 21. A 2- Ω resistor and a 4- Ω resistor are connected in parallel to a 6-V battery. The rate of energy dissipated in the 2- Ω resistor is:
 - (a) 8 Watts
 - (b) 6 Watts
 - (c) 9 Watts
 - (d) 18 Watts
- 22. In Ampere's law, $\oint \vec{B} \cdot d\vec{s} = \mu_0 i$, the integration must be over:
 - (a) any surface
 - (b) any closed surface
 - (c) any closed path
 - (d) any closed path that surrounds all the current producing \vec{B}
- 23. If the refractive indices of water and glass are $n_{\rm water} = 1.5$ and $n_{\rm glass} = 1.33$, then total internal reflection at an interface between this glass and water:
 - (a) occurs whenever the light goes from glass to water
 - (b) occurs whenever the light goes from water to glass
 - (c) may occur when the light goes from glass to water
 - (d) may occur when the light goes from water to glass
- 24. In a Young's double-slit experiment, it is essential that the two beams of light:
 - (a) have exactly equal intensity
 - (b) be exactly parallel
 - (c) travel equal distances
 - (d) come originally from the same source
- 25. Which of the following electromagnetic radiations has photons with the greatest energy?
 - (a) blue light
 - (b) yellow light
 - (c) x-rays
 - (d) microwaves

96

系所:生物科技研究所甲組

科目:普通物理

二·簡答題(共十題,每題五分)

1. The position of a particle in circular motion at constant speed may be written as:

$$\vec{r} = r \cos \omega t \, \hat{\mathbf{i}} + r \sin \omega t \, \hat{\mathbf{j}} \,, \, \hat{\mathbf{i}}^2 = \hat{\mathbf{j}}^2 = 1,$$

where $|\vec{r}| = r = \text{constant}$. What is the acceleration \vec{a} of the particle?

2. A box with mass m = 6.0kg slides with speed v = 4.0m/s across a frictionless floor in the positive x direction. It suddenly explodes into two pieces: one piece, with mass $m_1 = 2.0kg$, moves in the positive x direction with speed $v_1 = 8.0m/s$ (see FIG. 2). Find the velocity v_2 of the second piece with mass m_2 .

3. A fluid of density $\rho = 791kg/m^3$ flows smoothly through a horizontal pipe that tapers (see FIG. 3) in cross-sectional area from $A_1 = 1.20 \times 10^{-3} m^2$ to $A_2 = A_1/2$. The pressure difference ΔP between the wide and narrow sections of the pipe is 4120Pa. What is the volume flow rate $R = v_2A_2$ of the fluid?

4. At t = 0, a pulse is described by

$$y(x,t=0)=\frac{A}{B+x^2}$$

If it moves in the +x direction at 3m/s, find the function that describes it at time t=2s.

5. Consider the Carnot cycle (see FIG. 4) operating on ONE mole of ideal gas. The isothermal volume expansion ratio is $V_B/V_A=2.5$ and the pressure $P_A=10.0$ atm= 1.01×10^4 Pa. What is the heat transferred Q_1 ? (gas constant $R=8.314J/mole\cdot K$)

(背面仍有題目,請繼續作答)

編號:G 90

系所:生物科技研究所甲組

科目:普通物理

6. Consider the distribution of four charges in FIG. 5 Write down the potential V(x, y) at an arbitrary point (x, y).

FIG. 5. Potential V(x,y) of a charge distribution.

- 7. Two charges, one $q_1 = +3\mu C$ and the other $q_2 = +5\mu C$, are ONE meter apart. What is the location of a third charge $q_3 = +2\mu C$ such that it experiences no net force?
- 8. FIG. 6 shows the discharging of a capacitor C in an RC circuit. Write down the differential equation for the charge Q(t) on the capacitor. (Do not solve the equation.)

FIG. 6. Discharging of a capacitor in an RC circuit.

9. FIG. 7 shows a wire carrying a current I=6.0A in the positive direction of the x-axis and lying in a non-uniform magnetic field $\vec{B}=(2.0T/m)x\,\hat{\mathbf{i}}+(2.0T/m)x\,\hat{\mathbf{j}}$ with \vec{B} in teslas and x in meters. Find the force \vec{F}_B on the section of the wire between x=0 and x=2.0m.

FIG. 7. A wire carrying a current I in the magnetic field \vec{B} .

10. A radio station broadcasts at 89.3 MHz with radiated power of 43 kW. How many photons does it emit each second?

Useful Constants

$$K = \frac{1}{4\pi\epsilon_0} = 9.0 \times 10^9 Nm^2/C^2$$

$$1\mu C = 1 \times 10^{-6} C$$

$$1e = 1.602 \times 10^{-19}C$$

$$h = 6.626 \times 10^{-34} J \cdot s$$