图 學年度 國立成功大學 级電子系 二程數學 試題 某一頁

- 1. Let A be a symmetric tridiagonal matrix (i.e., A is symmetric and $a_{ij} = 0$ whenever |i-j| > 1). Let B be the matrix formed from A by deleting the first two rows and columns. Show that $\det(A) = a_{11}A_{11} a_{12}^2 \det(B)$, where A_{11} is the cofactor of a_{11} . (10%)
- 2. Let A be an $m \times n$ matrix. If B is a nonsingular $m \times m$ matrix, show that BA and A have the same nullspace and hence the same rank. (10%)
- 3. Use the matrix exponential to solve the initial value problem $\dot{Y} = AY$, $Y(0) = Y_0$, where $A = \begin{bmatrix} 3 & 4 \\ 3 & 2 \end{bmatrix}$ and $Y_0 = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$. (10%)
- 4. Solve for the given differential equations.

(a)
$$(1-x^2)y''-2xy'+2y=0$$
, $-1 < x < 1$. (7%)

(b)
$$y''-3y'-4y = \frac{e^{4x}(5x-2)}{x^3}$$
. (7%)

(c)
$$yy''+(y+1)(y')^2=0$$
. (6%)

- 5. Use the Laplace transform to solve Bessel's equation of order zero. (10%) ty'' + y' + ty = 0; y(0) = 1.
- 6. Solve for the integral equation. (5%) $f(t) = \cos(t) + e^{-2t} \int_0^t f(a)e^{2a}da$
- 7. (a) Find a Fourier series of period 6 which in the interval (1, 7) represents a function f(x) taking on the constant value +1 when $1 \le x \le 4$ and constant value -1 when $4 \le x \le 7$.
 - (b) Reducing the above Fourier series to the following form:

$$f(x) = A \sum_{n \text{ odd}} B \sin \frac{n\pi(x-1)}{3}$$

What are the values of A and B?

(12%)

- 8. Suppose that the analytic function f(z) has a pole of order m at the point z = a, derive the formula for evaluating the residue [Res[f(z);a]]. (8%)
- 9. Evaluate the following integral (15%)

$$\int_{-1}^{1} \frac{z+1}{z^2} dz$$

- (a) If the path is the upper half of the circle r = 1,
- (b) If the path is the lower half of the circle r = 1,
- (c) Explain the solutions you have obtained in (a) and (b).