- 1. (a) For the source follower in Fig.1 (a), find the open-circuit voltage gain v_{ol}/v_i and the output resistance R_{0l} , in terms of g_{ml} and χ . Neglect the effect of r_{ol} and that of the output resistance of the bias current source. $g_{mb} = \chi g_m$, g_{mb} is the body transconductance.
 - (b) For the common-gate amplifier in Fig,1(b), find the voltage gain v_o/v_{i2} and the input resistance R_i , in terms of g_{m2} , χ , and R. Neglect the effect of r_{02} and that of the output resistance of the bias current source.
 - (c) If the output terminal of the source follower in (a) is connected to the input terminal of common-gate amplifier in (b), find the overall voltage gain v_o/v_i of the cascaded amplifier.
 - (d)If $V_{DD} = 5$ V and the dc bias voltage at the drain of Q_2 is to be 0 V, find the effective voltage ($V_{GS} V_t$) required for Q_1 and Q_2 so that an overall voltage gain of 25 V/V is realized.
 - (e)For I = 50 μ A and k $_n$ = μ $_n$ C_{OX}=50 μ A/V², find R and the (W/L) required for Q₁ and Q₂.(15%)
- 2. As the circuit shown in Fig. 2, design the circuit to obtain a dc gain of 40 dB, a 3-dB frequency of 1.5 KHz., and an input resistance of 1 K Ω . At what frequency does the magnitude of transmission become unity? What is the phase angle at this frequency? Assume op amp is ideal.(10%)

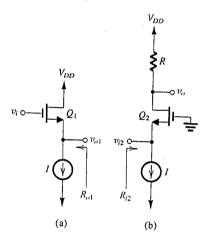


Fig. 1

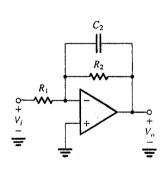


Fig. 2

- 3. (a)List five characteristics of an amplifier that are modified by negative feedback. (10%)
 - (b) Draw the circuit diagram of a switched-capacitor (SC) integrator. (5%)
 - (c) Derive the time constant of a SC integrator. (5%)
 - (d) Briefly explain why the time constant of a SC circuit can be well controlled. (5%)
- 4. If the collector current of a BJT operated in forward active region is expressed as $i_C = (av_{BE}^2 + bv_{BE})(1 + cv_{CE}) \approx \beta i_B$,

where a, b, c, and β are constant, derive and sketch its small-signal equivalent circuit for the cases of (a) c = 0 and (b) $c \neq 0$. (10%)

(背面仍有題目,請繼續作答)

90 學年度 國立成功大學 系 重多学 試題 共 2 頁 碩士班招生考試 然表子 於 所 第 2 頁

- 5. (a) Design a MOSFET current mirror to provide currents of I_o and $I_o/2$ simultaneously, where I_o is a constant. (5%)
 - (b) Derive the transfer characteristics (i.e., $v_O v_I$ relation) of the circuit shown in Fig. 3. Assume the Op-Amp is ideal. (5%)
 - (c) Draw the load line of the diode D_2 shown in Fig. 4 and find I graphically. Assume D_1 and D_2 are identical diodes, $V_A = 1.5V_\gamma$, where V_γ is the cut-in voltage of the diode. (5%)

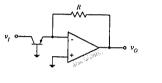


Fig. 3

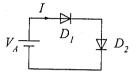
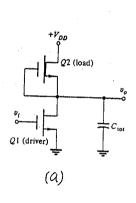
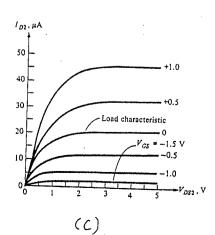



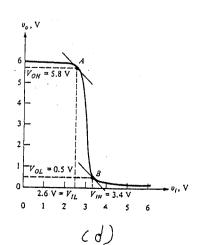
Fig. 4

6. An inverter circuit is shown in Fig. a. The output current-voltage characteristics of transistors Q1 and Q2, and the transfer characteristics of this inverter are shown in Fig. b, c, and d, respectively. Assume that C_{tot}=0.3pF and the input signal has V(0)=0.3V and V(1)=6V. Please determine the values of the propagation delay t_{PHL} and t_{PLH}. (25%)

 $V_{GS1} = 6.0 \text{ V}$ 300

250


5.5


100

4.5

Load line
3.5
3.0
2.5 V_{DS1} , v

(b)

