| 91學年度 可                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 微電子工程研究所 所 | 工程數學 | 試題 | 共第 | / 译 |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----|----|-----|---|
| The state of the s |            |      |    | 牙, | / 5 | 1 |

- Please find the least squares solution to the system described by,  $-2y_1 + 3y_2 = 1$ ,  $2y_1 y_2 = 2$ , and  $y_1 + y_2 = 3$  (15%)
- 2. Let  $\lambda$  an eigenvalue of an  $n \times n$  matrix A, and let X be an eigenvector belonging to  $\lambda$ . Please show that  $e^{\lambda}$  is an eigenvalue of  $e^{\Lambda}$  and X is an eigenvector of  $e^{\Lambda}$  belonging to  $e^{\lambda}$ . (15%)
- 3. Find the general solutions of the given differential equations.
  - (a)  $(y^2 + 1)dx = y \sec^2 x dy$ . (10%)
  - (b)  $y''-y'-12y = 2\sinh^2 x$ . (10%)
- 4. Given that t(1-t)y''+2y'+2y=6t; y(0)=0, y(2)=0
  - (a) Identify the type of the problem for the given equation and conditions. (5%)
  - (b) Please use the Laplace transform to solve the problem. (15%)
- 5. Find the Fourier series of the periodic function f, the graph of which is shown in the following figure. (15%)



Knowing that the ML bound describes

$$\left| \int_{\mathbb{T}} f(z) dz \right| \le ML$$

where  $|f(z)| \le M$  on C and L is the length of C. Find the ML bound of the following integral

$$I = \int_{\mathbf{z}_{\mathbf{z}}^2}^{\mathbf{z}} dz$$

where C is the straight line as shown. (15%)

