- 1. An electron in the ground state is confined in a cube of length 10⁻¹⁰ m in each edge. Find the energy of this electron. (15%)
- 2. Find the primitive translation vectors of the lattice reciprocal to the face-centered cubic lattice. (10%)
- 3. Given the electron concentration of a metal is 10^{22} cm⁻³. Find the Fermi energy of this metal. (15%)
- 4. The p-type Si shown in Fig. 1 is doped with 10^{17} cm⁻³. Find the Hall voltage in this sample with W = 100 μ m, A = 10^{-3} cm², I = 10 mA, and B_z = 10^{-4} Wb/cm². (10%)
- 5. A one-sided abrupt junction is doped with $N_A = 10^{15}$ cm⁻³ and $N_D = 10^{18}$ cm⁻³. Calculate the depletion layer width at zero bias under T = 300 K. (15%)
- 6. Qualitatively draw the energy band diagram of a n-p-n bipolar transistor under the active mode of operation. Explain your answer. (10%)
- 7. Qualitatively draw the drain current versus drain voltage characteristics of: (a) p-channel enhancement, (b) p-channel depletion type of MOSFET. Explain your answer. (10%)
- 8. A 0.1-μm-thick Si sample is illuminated with a monochromatic light of 10 mW in power and 400nm in wavelength. Given the absorption coefficient is 4×10⁴ cm⁻¹, calculate the amount of energy dissipated per second to the lattice. (15%)

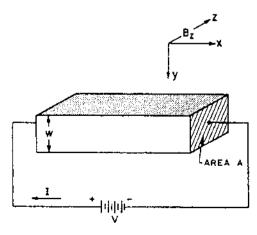


Fig. 1