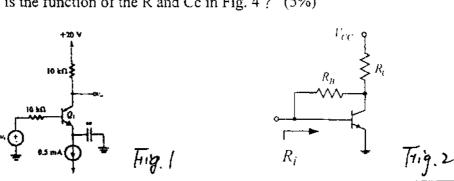
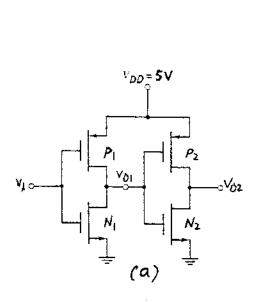
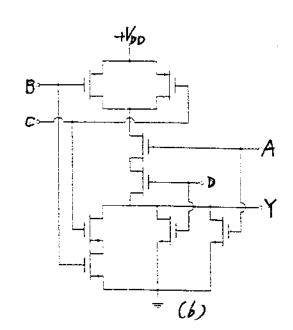
4.

6.

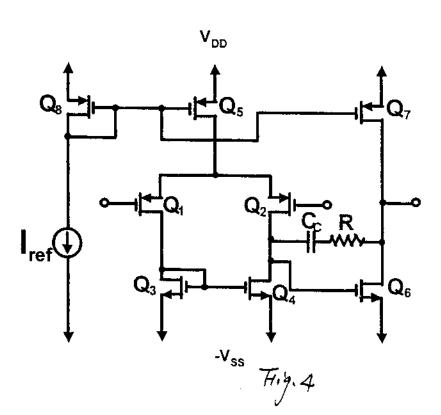
7.


- As the circuit shown in Fig.1, let $\beta = 100$, C₀=2pF and $f_T = 400$ MHz. Calculate 1. the midband gain and the upper 3-dB frequency. (12%)
- A multiple amplifier having a first pole at 1MHz and an open-loop gain of 100dB 2. is to be compensated for closed-loop gains as low as 20 dB by introduction of a new dominant pole. At what frequency must the new pole be placed?(3%)
- Consider the complementary BJT class B output stage and neglect the effects of 3. V_{BE} and V_{CEsat} . For $\pm 10V$ power supplies and a 100- Ω load resistance, what is the maximum sine-wave output power available? What supply power corresponds? What is the power-conversion efficiency? For output signals of half this amplitude, find the power-conversion efficiency.(10%)


Draw and explain briefly the possible load line of an enhancement-mode


n-MOSFET using (a) a forward-biased diode, or (b) a reverse-biased diode, or (c)

(a) A CMOS inverter pair is shown in Fig. 3(a). Let $V_{TN}=0.8V$, $V_{TP}=-0.8V$, and


- a depletion-mode n-MOSFET with $V_{GS} = 0 V$ as the load device. (15%) 5. Calculate the small-signal input resistance R_i as shown in Fig. 2. Assume
- $R_B = R_C = 2 \ k\Omega$ · $g_m = 25 \ mS$ · $\beta = 100$ · and $r_o = \infty$ · (10%)
- Kn=Kp. (i) If v_{O1} =0.6V, determine v_1 and v_{O2} . (ii) Determine the range of v_{O2} for which both N_2 and P_2 are biased in the saturation region. (20%) (b) What is the function realized at Y in the CMOS circuit shown in Fig.3(b)?
 - (5%)Your answers must be as brief as possible for the following questions
- (a) List the parameters used to specify the transmission characteristics of a low-pass filter. (5%)
 - (b) A filter transfer function is written as the ratio of two polynomials. The degree of its denominator is P and the degree of its numerator is R. What's the order of the filter? (5%) ©For the filter in (b) to be stable, what is the relation between P and Q. (5%)
 - (d) For the amplifier in Fig. 4, what's the class of its output stage? (Hint: Maybe one of class AB, A, B, C, D, E, ..., etc.) (5%)
 - (e) What is the function of the R and Cc in Fig. 4? (5%)

Firg. 3.

