國立成功大學九十四學年度碩士班招生考試試題

編號: 〒138 系所: 微电子工程研究所

科目:固慧电子元件

- 1. Inside a certain device, electrons with energy 3 eV are incident on a uniform potential energy barrier with 7 eV in height and 1 nm in width. Find the fraction of the electrons that can transmit through this barrier (10%)
- 2. Assume the cube edge of the conventional cell in a fcc lattice is 1 nm. Calculate the surface density of atoms for the (100) plane. (10%)
- 3. Fig. 1 is the band structure of a certain semiconductor. Which curve (A, B, C, or D) is heavy holes? Which curve is light holes? Explain your answer. (10%)

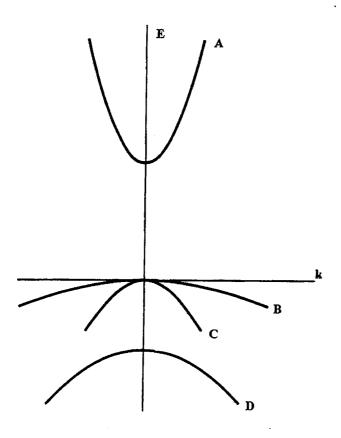


Fig. 1

4. For a silicon at room temperature (kT=0.0259 eV), it doped with 10¹⁵ arsenic atoms/cm³ on one side and doped with 10¹⁶ boron atoms/cm³ on the other side to form an abrupt p-n junction. Calculate the build-in potential, depletion region length for both n and p sides, and also draw the energy band diagram at thermal equilibrium indicating Fermi level, conduction and valence bands for this p-n junction.

(use $n_i = 10^{10} \, / \mathrm{cm}^3$, Si dielectric constant 11.8 and permittivity $\epsilon_0 = 8.85 \mathrm{x} 10^{-14} \, \mathrm{F/cm}$)

國立成功大學九十四學年度碩士班招生考試試題

編號: 万138 系所: 微电子所

科目: 国際电子允许

5. (a) For a P⁺NP device indicate the voltage polarity (+ or -) for the following operation regions: (10%)

Region	V _{EB}	V_{CB}
Active		
Saturation		
Cutoff		
Inverted active		
Inverted saturation		

- (b) Sketch the minority carrier distribution in P⁺, N, and P regions for an ideal P⁺NP transistor under active mode of operation. (10%)
- 6. For a metal-SiO₂-Si capacitor having N_A =5×10¹⁶ cm⁻³ and d=8nm, calculate the minimum capacitance on the C-V curve. (Thickness of SiO2 d; dielectric constant of Si 11.9; dielectric constant of SiO₂ 3.9; ε_o =8.85×10⁻¹⁴ F/cm; $kT/q \sim 0.026$ V, intrinsic carrier density of Si n_i =9.65×10⁹ cm⁻³) (10%).
- 7. Consider a long-channel MOSFET with a channel length $L=1~\mu\text{m}$, a channel width $Z=10~\mu\text{m}$, substrate doping $N_A=5\times10^{16}~\text{cm}^{-3}$, $\mu_n=800~\text{cm}^2/\text{V-s}$, the oxide capacitance per unit area $C_o=3.45\times10-7~\text{F/cm}^2$, and the threshold voltage $V_T=0.7~\text{V}$. Find the saturation drain voltage and current V_{Dsat} and I_{Dsat} for applied gate voltage $V_G=5\text{V}$. (20%)