國立成功大學九十五學年度碩士班招生考試試題、

共2頁,第1頁

編號:「 264 系所:微電子工程研究所

科目:固態電子元件

本試題是否可以使用計算機: ②可使用 「一不可使用 (請命驅老師勾選)

- 1. Assume the Fermi energy level is 0.35 eV above the valence band energy and T = 300 K.
 - (a) Determine the probability of a state being empty of an electron at $E_{\nu\nu}$ (5%)
 - (b) Repeat part (a) for an energy state at $E_v kT$. (5%)
- 2. The Schottky barrier height of a silicon Schottky junction is $\phi_{Bn} = 0.59$ eV, the effective Richardson constant is $A^* = 114 \text{ A/K}^2\text{-cm}^2$, the cross-sectional area is $A = 10^{-4} \text{ cm}^2$. For T = 300 K, calculate
 - (a) The ideal reverse-saturation current. (5%)
 - (b) The diode current for $V_a = 0.30 \text{ V.} (5\%)$
- 3. Consider an n-P heterojunction in thermal equilibrium. Derive the following equation

$$W = \left\{ \frac{2\varepsilon_{n}\varepsilon_{P} \left(N_{dn} + N_{aP} \right)^{2} V_{bi}}{e N_{dn} N_{aP} \left(\varepsilon_{n} N_{dn} + \varepsilon_{P} N_{aP} \right)} \right\}^{1/2}$$

for the total depletion width W of an abrupt heterojunction, where ε_n and ε_P are the permittivities of the n and P materials, N_{dn} and N_{aP} are the donor and the acceptor dopant densities of the n and P materials, respectively, e is the electron charge, and V_{bi} is the total built-in potential barrier. (20%)

4. An ideal n-channel MOSFET has the following parameters:

$$W = 30 \mu \text{m}$$
 $\mu_n = 450 \text{ cm}^2/\text{V-s}$ $L = 2 \mu \text{m}$
 $t_{\text{ox}} = 350 \text{ A}$ $V_T = +0.80 \text{ V}$

The gate terminal is connected to the drain terminal. Fill out the following table for I_D versus V_{DS} in the range of $0 \le V_{DS} \le 5$ V. (10%)

V _{DS} (V)	0	1	2	3	4	5
I_D (mA)						

- 5. If 3×10^{15} gold atoms per cm³ are added to silicon as a substitutional impurity and are distributed uniformly through out the semiconductor, determine the distance between gold atoms in terms of the silicon lattice constant, assuming the gold atoms are distributed in a cubic array. The lattice constant a of the silicon is 5.43 Å. (10%)
- 6. Consider an optical cavity of a laser diode. Show that
 - (a) The wavelength separation between two adjacent resonant modes is $\Delta \lambda = \lambda^2/2L$. (10%)
 - (b) If the photon output of a laser diode is equal to the bandgap energy, find the wavelength separation between adjacent resonant modes in a GaN laser with $L=100~\mu m$ (hint: bandgap

(背面仍有題目。請繼續作答)

編號: 264 系所: 微電子工程研究所

科目:固態電子元件

本試題是否可以使用計算機: ①可使用 / □不可使用 (請命蓋老師勾選)

energy for GaN is ~3.4 eV). (10%)

7. Consider the $1/C^2$ versus V_R curve for W-Si Schottky barrier diode. Calculate (a) the semiconductor doping (5%) and (b) Schottky barrier height from the silicon diode experimental data shown below. Assume T = 300 K. (5%)

- 8. Consider a pn junction GaN LED. Assume that photons are generated uniformly in all directions in a plane perpendicular to the junction at a distance of 0.50 µm from the surface.
 - (a) Taking the total internal reflection into account, calculate the fraction of photons that have the potential of being emitted from the semiconductor. (5%)
 - (b) Using the results of part (a) and including Fresnel loss, determine the fraction of generated photons that will be emitted from the semiconductor into air (neglect absorption losses). (5%)