國立成功大學九十六學年度碩士班招生考試試題

編號: 267 系所:微電子工程研究所

科目:固態電子元件

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

- 1. Density of states N(E) is the number of available electronic states per unit volume per unit energy around the energy E. Accounting for spin, the density of states in a three dimensional system is $N(E) = \frac{\sqrt{2}m^{3/2}E^{1/2}}{\pi^2\hbar^3}$. Derive N(E) in a 2-D system (as quantum well) and in a 1-D system (as quantum wire). (10%, 10%)
- 2. Assume an abrupt junction of n- and p- type Silicon, with the doping concentrations $N_D \, 5 \times 10^{18} \, \text{cm}^{-3}$ and $N_A \, 2 \times 10^{15} \, \text{cm}^{-3}$ The intrinsic carrier density of Si is $1 \times 10^{10} \, \text{cm}^{-3}$ at temperature 300 K. The permittivity and dielectric constant of Si are ϵ_0 : 8.854×10^{-12} (farads/meter) and 11.9. Calculate the built-in voltage and the width of the depletion region. (15%)
- 3. Consider two energy levels E_1 and E_2 of an atom, where E_1 corresponds to the ground state and E_2 corresponds to the excited state. Einstein identified three radiative processes expressed by

$$\frac{dn_2}{dt} = -A_{21}n_2 + B_{12}n_1\rho(v) - B_{21}n_2\rho(v) = -\frac{dn_1}{dt}$$

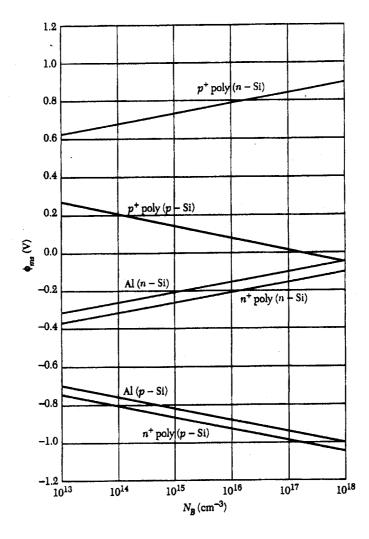
, where n_2 and n_1 are the populations of E_2 and E_1 . The coefficients of A_{21} , B_{12} , B_{21} correspond to the radiative rates of spontaneous emission, absorption and stimulated emission. By Plank formula, the electromagnetic energy density inside a cavity at the central frequency of interest ν is

$$\rho(v) = \left(\frac{8\pi n^3 v^2}{c^3}\right) \frac{hv}{e^{hv/kT} - 1}, \text{ where } hv = E_2 - E_1. \text{ Using classic Boltzmann statistics}$$

$$n_2/n_1 = \exp(-hv/kT)$$
, find out $\frac{A_{21}}{B_{21}}$ and $\frac{B_{12}}{B_{21}}$. (15%)

- 4. Germanium has bandgap $E_g = 0.66$ eV, dielectric constant $\varepsilon_r = 15.8$, and electron effective mass $m_e = 0.1$ m_0 , where m_0 is real mass of an electron. Find the donor ionization energy. (10%)
- 5. A heterojunction bipolar transistor (HBT) has a bandgap of 1.5 eV for the emitter and 1.35 eV for the base. A bipolar junction transistor (BJT) has a bandgap of 1.35 eV for both the emitter and base materials. The emitter doping is 10^{17} cm⁻³ and base doping is 10^{15} cm⁻³ for BJT. If the HBT has the same emitter doping and the same common-emitter current gain β_0 as the BJT, find the base doping of HBT. Assume T = 300 K and all other device parameters are the same. (15%)

(背面仍有題目.請繼續作答)


國立成功大學九十六學年度碩士班招生考試試題

編號: 267 系所:微電子工程研究所

科目:固態電子元件

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

6. Consider the work function difference as a function of background impurity concentration shown below. For an n-channel n⁺-polysilicon-SiO₂-Si MOSFET with substrate doping $N_A = 10^{17}$ cm⁻³ and fixed oxide charge $Q_f/q = 4 \times 10^{11}$ cm⁻², calculate the threshold voltage V_T of this device if the gate oxide thickness is 4 nm. Assume T = 300 K and intrinsic carrier density of Si is 10^{10} cm⁻³. (15%)

7. An n-channel GaAs MESFET has a tungsten contact. The barrier height of W-GaAs diode is 0.9 V. The n-channel doping is 3×10^{15} cm⁻³ and the channel thickness is 0.5 μ m. Calculate the pinch-off voltage of this MESFET. Assume T = 300 K and the dielectric constant of GaAs is 12.4. (10%)