編號:

216

國立成功大學九十八學年度碩士班招生考試試題

共2頁,第1頁

系所組別: 微電子工程研究所

考試科目: 固態電子元件

考試日期:0307·節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

1. An electron with energy of 3.5 eV impinges on a potential barrier of height 5.0 eV and thickness 1.5 Å, what would be the corresponding transmission coefficient? Please repeat the calculation for a barrier with thickness of 20 Å. (12%)

- 2. If the number of ionized donor can be given by $n = \frac{N_D}{1 + e^{(E_F E_D)/kT}}$ and for an n-type silicon with 10^{17} cm⁻³ titanium donor impurities and a donor level at $E_D = 0.21$ eV, find the ratio of the neutral donor density to the ionized donor density at 77 K. (Hint: N_C (Si) = 2.86×10^{19} cm⁻³) (13%)
- 3. The bandgap of $Si_{1-x}Ge_x$ is given by $1.17 0.96x + 0.43x^2 0.17x^3$. If we have a $Si_{1-x}Ge_x/Si$ HBT with x = 12% in the base region (x = 0% in emitter and collector regions), and assume the base current is due to emitter injection efficiency only, what would be the expected change in the common-emitter current gain between 0° and 110° C? (13%)
- 4. You are asked to design a Si p-n junction which would meet the specifications of $N_D = 3.5 \times 10^{18}$ cm⁻³ and $\mathcal{C}_{max} = 5 \times 10^5$ V/cm at $V_R = 40$ V and T = 300 K. Please determine the corresponding p-type doping concentration (N_A) as needed for meeting these design criteria. (12%)
- 5. Assume the drain current (I_D) vs. gate voltage (V_{GS}) of an n-channel MOSFET measured at drain voltage $V_D = 0.1$ V is shown in Fig. 1. This device has substrate doping concentration $N_A = 10^{17}$ cm⁻³, channel width W = 10 μ m, channel length L = 1 μ m, and gate oxide d = 4 nm. Find the inversion carrier mobility. (12%)

編號:

216

國立成功大學九十八學年度碩士班招生考試試題

共2頁,第2頁

系所組別: 微電子工程研究所

考試科目: 固態電子元件

考試日期:0307,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

6. Assume a p-channel MOSFET has substrate doping concentration $N_D = 5 \times 10^{16}$ cm⁻³, W = 10 μ m, L = 1 μ m, and d = 6 nm. Find the change in threshold voltage at T = 300 K when the substrate bias is varied from 0 V to 1 V. (14%)

- 7. For a Si p-n junction solar cell with photocurrent 50 mA, diode saturation current 1 nA, and cell area 10 cm², calculate the open-circuit voltage of this solar cell at 300 K. (10%)
- 8. For an n-channel GaAs MESFET with mobility 9000 cm²/V-s, n-channel doping concentration 5×10^{15} cm⁻³, channel width 10 μ m, channel length 1 μ m, and channel thickness 0.4 μ m, calculate the cutoff frequency of this device at 300 K. (14%)

Hint: dielectric constant of $SiO_2 = 3.9$ dielectric constant of GaAs = 12.4dielectric constant of Si = 11.9intrinsic carrier concentration of $Si = 10^{10}$ cm⁻³ Boltzmann constant = 1.38×10^{-23} J/K elementary charge = 1.6×10^{-19} C permittivity in vacuum = 8.85×10^{-14} F/cm