編號:

205

國立成功大學九十九學年度碩士班招生考試試題

共2頁,第1頁

系所組別: 微電子工程研究所

考試科目: 固態電子元件

考試日期:0307,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

1. Gallium arsenide at T=300K contains acceptor impurity atoms at a density of $1\times10^{15} \text{cm}^{-3}$. Additional impurity atoms are to be added so that the Fermi level is 0.45eV below the intrinsic level. Determine the concentration and type of impurity atoms to be added. (if $n_i=1.8\times10^6 \text{ cm}^{-3}$) (9%)

2. A geometry for measuring the Hall effect is shown in Fig. 1. A silicon Hall device at T=300K has the following geometry: $d=10^{-3}$ cm, $W=10^{-2}$ cm, and $L=10^{-1}$ cm. The following parameters are measured: $I_x=0.75$ mA, $V_x=15$ V, $V_H=+5.8$ mV, and $B_z=1000$ gauss. Determine (a) the conductivity type, (b) the majority carrier concentration, and (c) the majority carrier mobility. (11%)

Fig. 1

- 3. The doping concentrations of a silicon p-n junction are $N_A = 10^{17}$ cm⁻³ on the p-side and $N_D = 10^{16}$ cm⁻³ on the n-side. Calculate the depletion layer widths in the p-side (x_p) and n-side (x_n) at 300 K when a 5 V reverse bias is applied. (if $n_i = 10^{10}$ cm⁻³, silicon dielectric constant 11.9, and permittivity $\epsilon_0 = 8.85 \times 10^{-14}$ F/cm) (10%)
- 4. The junction capacitance (C_j) of a silicon p-n⁺ one-sided abrupt junction with junction area 10 μm² is shown in the table below.

reverse bias applied (V)	0	1	2	3
$C_{j}(F)$	3.07×10^{-15}	2.11×10 ⁻¹⁵	1.71×10 ⁻¹⁵	1.47×10 ⁻¹⁵

Calculate the doping concentrations in the p-side (N_A) and n-side (N_D). (15%)

編號:

205

國立成功大學九十九學年度碩士班招生考試試題

共2頁,第2頁

系所組別: 微電子工程研究所

考試科目: 固態電子元件

考試日期:0307,節次:2

※ 考生請注意:本試題 ☑可 □不可 使用計算機

5. Qualitatively draw the energy band diagram (including Fermi-level E_F) of an n-p-n bipolar junction transistor under the (a) active, (b) saturation, and (c) cutoff modes of operation. Explain your answer. (15%)

- 6. Please sketch the current-voltage (*I-V*) characteristics of four different types of MOSFETs (*n*-channel enhancement, *n*-channel depletion, *p*-channel enhancement, and *p*-channel depletion). (10%)
- 7. Please derive an equation that relates the quantum efficiency (η) of a *p-i-n* photodiode to its responsivity (R) at a wavelength λ . (15%)
- 8. An InGaAs Fabry-Perot laser operating at a wavelength (λ) of 1.55 μ m has a cavity length of 600 μ m. The index of refraction (n) of InGaAsP is 3.39. Derive and then calculate the separation $\Delta\lambda$ between the allowed modes in the longitudinal direction, assuming $dn/d\lambda = 0.85 \ \mu\text{m}^{-1}$. (15%)