－，Data Structures（50\％）
1．（20\％）
Let S_{n} be the expected number of comparisons in a successful search of a randomly constructed n－node binary tree，and let U_{n} be the expected number of comparisons in an unsuccessful search．We assume that H_{n} is the n－th harmonic number．Please represent S_{n} and U_{n} respectively using harmonic number．

2．（30\％）

For the AOE（Activity on Edge）network described by the table，（a）what is the earliest time the project can finish？（15\％）（b）Please list all critical paths．Note that state 1 is the starting state and state 10 is the goal state．（ 15% ）

Activity	From state	To state	Time
a_{1}	1	2	5
a_{2}	1	3	5
a_{3}	2	4	3
a_{4}	3	4	6
a_{5}	3	5	3
a_{6}	4	6	4
a_{7}	4	7	4
a_{8}	4	5	3
a_{9}	5	7	1
a_{10}	5	8	4
a_{11}	6	10	4
a_{12}	7	9	5
a_{13}	8	9	2
a_{14}	9	10	2

二，Algorithms（50\％）
3．(20%) Solving the recurrence $T(n)=2 T(n / 4)+\sqrt{n}$ using Θ notation．

4．（20\％）The incident matrix of a directed graph $G=(V, E)$ with no self－loops is a $|V| \times|E|$ matrix $B=\left(b_{i j}\right)$ such that
$b_{i j}=\left\{\begin{array}{c}-1 \text { if edge } j \text { leaves vertex } i, \\ 1 \text { if edge } j \text { enters vertex } i, \\ 0 \text { otherwise } .\end{array}\right.$
Describe what the entries of the matrix product $B B^{T}$ represent，where B^{T} is the transpose of B ．

5．（ 10% ）The Fibonacci numbers are defined by recurrence

$$
F_{0}=0
$$

$F_{1}=1$ ，
$F_{i}=F_{i-1}+F_{i-2}$ for $i \geq 2$.
Give an $O(n)$－time dynamic－programming algorithm to compute the nth Fibonacci number．

