學年度 為就工程考試(工程數學試題) 國立成功大學 76

To any part of the following problems, if your solution or proof is incomplete, that part will get zero point. NOTICE

- 1. Given is the recurrence relation $F_n = F_{n-1} + F_{n-2}$ for $n = 2, 3, \ldots$ with $F_0 = F_1 = 1$.
 - (6%)
 - (1) Find the closed-form solution. (2) Show that N(6%)
 - (3) Show that $\sum_{n=1}^{2N} (-1)^{n+1} F_n = -F_{2N-1}.$ (6%)
- 2. Let A_k , L_k , and U_k be square matrice and let $A_k = L_k U_k$ for k = 1, 2, ...,where L_k 's are lower triangular and U_k 's are upper triangular. Both L_k and U_k are nonsingular. Also let $A_n = U_{n-1}L_{n-1}$ for n = 2, 3, ...
 - (1) Show that A_n and A_1 have the same eigenvalues.
 - (2) Let $Q_n = L_1 L_2 ... L_n$ and $R_n = U_n U_{n-1} ... U_1$. Show that $Q_n R_n = A_1^n$. (6%)
 - (3) Assume that $\lim_{n\to\infty} R_n = R$ exists and is nonsingular. Show that $\lim_{n\to\infty} A_n$ exists and is lower triangular.
- 3. Let X be a value representing the outcome of a random experiment, where the density function is given as exp(-x), for $x \ge 0$

 $f_{X}(x) =$ elsewhere (1) Find the probability that, in five performances of the experiment, at least three values of x will be greater than 1/2. (7%)

- (2) If $Y = (X + 1)^2$, find the probability that Y lies between 5 and 10.
- 4. The density function of random variable X is given as (x + 1)/8, for $-1 \le x \le 3$ $f_X(x) =$
 - 0, elsewhere (1) Let Y be a random variable which represents only those values of X that fall outside the interval (1, 2). Find the density function, (10%)
 - mean, and variance of Y.

 Let W be another random variable defined by W = | Y |.

 density function, mean, and variance of W. Find (10%)
- 5. Let the Gamma function be denoted by $\Gamma(x)$.
 - (1) Show that $\Gamma(1/2) = \pi^{1/2}$. (2) Express $\Gamma(9/2)$ in terms of $\Gamma(1/2)$. (10%) (5%)
- 6. Show that $\int_{-\infty}^{\infty} [(\sin t)/t] dt = \pi .$ (15%)