國立成功大學 78 學年度翻2程所 考試(資料結構翻試題)

[PROGRAMMING LANGUAGE] (25%)

1. Show the values printed by the following program when parameters are passed by (a) value, (b) reference, and (c) value-

```
begin integer a
procedure P(b); integer b
    begin b:=b+1; print(b,a) end
a:=1; P(a); print(a);
end
```

- (d) What is "aliasing" ? (e) Under what condition, aliasing will happen in the above program ? (15%, 3% each)
- 2. (a) What is "dangling else" ? (4%) (b) Please give at least two methods to solve this problem. (6%)

[ALGORITHM] (25%)

A procedure PRG(.) is given as below:

```
procedure PRG(i)
 global integer n,A(1:n),j,k;
  integer i
   endif
   else k <- n
 endif
 return(k)
endPRG
```

- (a) What is the function of the above procedure ? (5%)
- (b) Please write a nonrecursive version of the above program. (5%)
- 2. You have 1200 dollars to purchase stocks. Please use a greedy method to achieve maximum profit if the market conditions are given as below.

STOCK	Available	price	profit
	(unit)	(dollar)	(dollar)
A	16	30	10
B	18	10	2
C	15	25	8
D	20	15	4
E	16	20	7

(a) Explain the greedy method in mathematic formular. Maximize (

• • • • • , Subject to and explain ...

5%

- (b) Get the result combination (e.g. A 15, B 17, C 10, ..) and resulted profit. 5%
- (c) If you are only allowed to buy stock by set, which consists of five stock units, what is the maximum profit you can make? 5%

191

國立成功大學 78 學年度資訊工程所考試(資料結構布程試題) 第 2 頁

[DATA STRUCTURE] (50%)

- 1. Obtain the tight upper bound of $\sum_{i=1}^{n} i^{k}$. (10%)
- 2. Assume that you find two algorithms for a given problem, one of which is $O(2^n)$ and the other $O(1.9^n)$. Is $1.9^n = 0(2^n)$? If so, explain why? If not, explain which bound is better. (15%)
- 3. Though the worst case running time of the quick sort algorithm is $O(n^2)$, comparable to Bubble sort and other relatively inefficient sorting algorithms, it is nonetheless considered an efficient and useful algorithm. Briefly explain why. (15%)
- 4. Do you believe P≠NP? Argue accordingly. (10%).