國立成功大學83 學年度資訊程時考試(程式設计試題)第1頁

MATI:

ALGORITHM

- 1. (14%) Write a quicksort so that elements of the array need not be moved.
- 2. (18%) True or False (defend your answer): the following nondeterministic algorithm solves the No Partion Problem in nondeterministic polynomial time.

```
HalfSet:={};
p:=n;
repeat
      count:=choose({0,1})
      if count=1 then
               HalfSet:= HalfSet \cup \{p\}
      endif
      p:=p-1;
until p=0
iſ
                                              \sum_{i \in HalfSet} c_i \neq \sum_{i \notin HalfSet} c_i
then
          success, print("yes")
clse
          failure, print("no")
endif
```

3. (18%) Let $A=(a_1,a_2,....,a_n)$ and $B=(b_1,b_2,....,b_m)$ be two sets. Assume $1 \le a_i \le p, 1 \le i \le n$ and $1 \le b_i \le p, 1 \le i \le m$. All a_i s and b_i s are integers. Write an algorithm to determine whether A and B are equal, your algorithm should work in O(n+m) time.

國立成功大學 83 學年度 資訊程所考試(程式設計, 試題)第2 頁

PART II: Data Structure

1.(18%) Assume that we have a file of records to be stored in disk and we want to build index on the file. The index we have chosen is the B-tree. We have the following given information.

Each record of the file is 100 bytes.

The disk is organized into pages and each disk page has a capacity of 4 Kbytes. The field of each record on which the index is built contains a 4 byte integer. Each index pointer is 4 byte wide.

Please answer the following questions:

- (a) If each node of the B-tree is also 4 Kbytes in capacity, how many leaf nodes will a three-level B-tree have? (The three levels include the root node.)
- (b) What is the minimum size of the main memory if the entire B-tree is to be retained in the main memory?
- (c) What is the maximum size of a file in <u>records</u> can such a three-level B-tree index? (Assume that the file is in disk.)

2.(20%)

- (a) The radius of a tree is the maximum distance between any two vertices. Given a connected and undirected graph, write an algorithm for finding a spanning tree of minimum radius.
- (b) Analyze the complexity of your algorithm.

3.(12%) Let P be a pointer to a unidirectional circularly linked list. Write an algorithm to show how to add elements to and delete elements from the list.