國立成功大學八十四學年度資訊工程考試(

Part I: Linear Algebra (50%)

1. Compute the ranks of the following matrices. (10%)

(1)
$$A = \begin{bmatrix} 3 & 1 & 2 & 5 \\ 1 & 2 & -1 & 2 \\ 4 & 3 & .1 & 7 \end{bmatrix}$$
 (2) $B = \begin{bmatrix} 3 & 1 & 2 & 5 \\ 1 & 2 & -1 & 2 \\ 4 & 3 & 1 & 1 \end{bmatrix}$.

2. Show that the vectors (1, 1) and (-1, 2) form a basis of \mathbb{R}^2 . (5%)

Find the coordinate of the vector (a, b) in \mathbb{R}^2 with respect to the vectors (1, 1) and (-1, 2). (5%)

3. A cryptosystem is one in which a meaningful message block M, called the plaintext, is enciphered (or transformed) into a meaningless message block, called the ciphertext. This transformation is usually specified by a key in shch a way that only the authorized users who know the key can decipher (recover) the ciphertext.

Assume that you are an attacker. Knowing that the transformation of a given cryptosystem is a 3*3 matrix transformation and also knowing the following pairs of plaintex—ciphertext:

$$\begin{aligned} &(\mathsf{M}_1,\,\mathsf{C}_1) = (2,\,1,\,2),\,(3,\,15,\,8);\\ &(\mathsf{M}_2,\,\mathsf{C}_2) = (0,\,6,-2),\,(-6,\,14,-2);\\ &(\mathsf{M}_3,\,\mathsf{C}_3) = (0,\,3,-1),\,(-3,\,7,-1);\\ &(\mathsf{M}_4,\,\mathsf{C}_4) = (4,\,1,\,1),\,(7,\,21,13). \end{aligned}$$

Find the enciphering and deciphering keys of the cryptosystem. (10%) Compute the plaintext of the ciphertext C = (0, 8, 4). (5%). What is the requirement(s) for a matrix to be a transformation in a cryptosystem.

4. Consider the vector space of all functions of a variable t. Show that the pair of functions e^t , e^{2t} are linear independent. (10%)

Part II Discrete Mathematics

- 1. (15%) Solve the following recurrence relation for the Fibonacci sequence of numbers: $F_{\rm n}=F_{\rm n-1}+F_{\rm n-2}, \ {\rm given\ that}\ F_{\rm i}=F_{\rm 2}=1.$
- 2.(10%) For the finite state machine shown below, please find all equivalent states and obtain an equivalent finite state machine with the smallest number of states.

Present state	Next si Present 0	input 1	Output
A B C D E F G H	F D G E D A C A	B C B A A G H H	0 0 0 1 0 1 1

- 3. (15%) Show that a group in which $x \cdot x = i$ for each $x \in G$ is communicative.
- 4. (10%) Sow that there exists a constant c such that for $n \ge c$, $(1.1)^n \ge n^{100}$.