86 學年度 國立成功大學 冷识 2程确究所 中2的但程式设计 試題 共 → 頁 硕士班招生考試 觉识 2程确究所 中2的但程式设计 試題 第 / 頁

Data Structure

- 1. (20%) Answer the following questions.
 - (a) There are many ways to represent a graph in a computer program. Give one of them and use an example to show how.
 - (b) If each edge of the graph has a weight, how would you represent this weight in your graph representation given above? Explain it.
 - (c) Write a pseudo code to show how to find minimum spanning tree based on your given graph representation. Proper illustrations of your pseudo code should be added to make your program understandable.
- 2. (30%) Answer the following questions.
 - (a) What is an AVL-tree? Describe it formally.
 - (b) Insert the following values into an AVL-tree in the given order 78, 63, 95, 51, 83, 105, 79, 85, 100, 200 and show the AVL-tree. Now, if a new value 80 is inserted, how to rebalance the tree?
 - (c) What is a B-tree? Describe it formally.
 - (d) What is a reasonable size of each node of a B-tree (i.e., the number of data elements a node should contain)? Explain why.
 - (e) Give an example to show a single linked list, a double linked list, and a circular list. Compare their advantages and disadvantages of these lists.

86 學年度 國立成功大學治 1272 研究 所令2两征视代设计 試題 共 二頁 硕士班招生考試 见讯工程研究 所令2两征视代设计 試題 第 二 頁

Algorithm

1. (15%) If k is a nonnegative constant then the solution to the recurrence

$$T(n) = \begin{cases} k, & n = 1\\ 3T(n/2) + kn, & n > 1 \end{cases}$$

for n a power of 2 is

$$T(n) = 3kn^{\log_2 3} - 2kn$$

Prove this statement.

- 2. (20%) Let X[1..n] and Y[1..n] be integer arrays, each sorted in nondecreasing order. Write an $O(\log n)$ algorithm that finds the kth smallest of the 2n combined elements, where $1 \le k \le n$.
- 3. (15%) True or False (defined your answer): the following nondeterministic algorithm solves the No Partion Problem in nondeterministic polynomial time.

```
HalfSet := \{\};
p := n;
repeat
count := choose(\{0,1\})
if count = 1 then
HalfSet := HalfSet \cup \{p\}
endif
p := p - 1;
until p = 0
if \sum_{i \in HalfSet} c_i \neq \sum_{i \in HalfSet} c_i
then
success, print ("yes")
else
failure, print ("no")
```