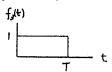

86 學年度國立成功大學得识不程研究所 计算机数学 試題 第 1 頁

part I: Linear Algobra (50%)

1. (a) Find a basis for the nullspace of 5 to


$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}$$

- (b) Verify that the basis found in (a) is orthogonal to the row space of A. 5%
- (c) Given $\bar{x} = (3,3,3)^T$, (T denotes transpose), split it into a row space component \bar{x}_n and a nullspace component \bar{x}_n . 5%
- 2. (a) Give the definition of an orthogonal matrix. 3 %
 - (b) Show that multiplication by an orthogonal matrix Q preserves lengths, that is, $\|Qx\| = \|x\|$ for every vector \bar{x} . 3 %
 - (c) Show that multiplication by an orthogonal matrix Q also preserves inner products, that is, $\langle Q\bar{x},Q\bar{y}\rangle = \bar{x}^T\bar{y}$ for every \bar{x} and \bar{y} . 4 f.
- 3. (a) Use the Gram-Schmidt orthogonalization procedure to find an orthonormal basis $\{\phi_1(t), \phi_2(t)\}\$ for the set of the following functions $f_1(t), f_2(t)$.

Plot $\phi_1(t)$ and $\phi_2(t)$. The inner product between $f_i(t)$ and $\phi_j(t)$ is defined by $\langle f_i(t), \phi_j(t) \rangle = \int_0^T f_i(t) \phi_j(t) dt$. 5 \$

(b) Find the function in the space spanned by $\{\phi_1(t), \phi_2(t)\}$ to best approximate (the one with least square error) the following function $f_3(t)$. 5%

- (c) Calculate the least square error in (b). 5 \$
- 4. Each year 20% of the students outside information engineering major move in, and 10% of the students inside move out. Assume that the total number of students remains the same every year.
 - (a) Eventually (after infinite years), how many percentages of the total students remain outside the information engineering major (you can guess). 5 %
 - (b) Formulate the above problem in a matrix form, then solve the eigenvalue problem to obtain your answer in (a). 5 %

Part II Discrete Mathematics (50%)

- 1. Solve the following recurrence relations. (10%)
 - (a) $a_{n+2}^2 5a_{n+1}^2 + 6a_n^2 = 7n$, $n \ge 0$, $a_0 = a_1 = 1$
 - (b) $a_n + na_{n-1} = n!$, $n \ge 1$, $a_0 = 1$
- 2. Determine and explain whether each of the following statements is true. (10%)
 - (a) Every group has at least one proper subgroup.
 - (b) A group with only three elements is commutative.
- 3. A computer program selects an integer in $\{n:1 \le n \le N\}$ at random and prints the result. This is repeated N times. (10%)
 - (a) Set N = 3. What is the probability that the value n=1 appears in the printout at least once?
 - (b) Set N = 1,000,000. What is the probability that the value n=1 appears in the printout at least once?
- 4. Construct a graph with vertex set $\{0,1\}^3$, which consists of 3-tuples of 0's and 1's, and with an edge between vertices v and w if v and w differ in exactly two coordinates. (10%)
 - (a) Sketch the graph.
 - (b) How many vertices does the graph have of each degree?
- 5. An urn has 4 yellow balls and 1 green ball. (10%)
 - (a) Balls are drawn from the urn without replacement until the green ball is obtained. What is the probability for getting the green ball within 3 times?
 - (b) Repeat part (a) if each ball is replaced after each drawing.