@

35

33 e

g BERDKE pop s o & EP
Rt sn (AU HAB D dnm

~

pu|

M
s

1.[30 points] Consider the following synchronization problem. In this problem, there
is one dispatcher who decides the access ordering among n tasks (7;, 7, ... , 7,).
The dispatcher does so by randomly generating a total-ordering sequence
Who[1..n], in which Who[i] = j means the i-th task entering the critical section is 7.
In addition, we provide another array Order[1..n] to perform the inverse function.
Namely, Order[i]= j means 7; is the j-th task in the ordering. Naturally,
Order[Who[/]]=i and Who[Order[/]] = j, V' i, j. Task 7; may enter the critical
section if each task z;whose Order[/] < Order[i] has exited the critical section. If a
task tried to enter the critical section before its predecessor(s) enter the critical
section, it waits. We also provide an array of status flag, done[l..n] (initialized to
all false), to indicate the execution status of each task. After a task 7; finishes its
execution, it sets its corresponding flag done[i] to true. We also make the
following assumptions:

¢ Only one task is allowed at a time in the critical section.

o The dispatcher dand each task only execute once.

e The dispatcher finishes its execution before any task starts.

o The dispatcher calls Gen_Seq(Order,Who) to set up the values in Order[1..n]
and Who([1..n] arrays.

Based on the above description, the declaration of variables and the pseudo code of
the dispatcher and each task are given below:

semaphore mutex, first-delay, second-delay;
int first-count, second-count, Order[1..n], Who[1..n];
boolean done[l..n];

Dispatcher:
Gen_Seq(Order,Who);

Task 7; :
wait(mutex);
while (my_trun(i) # true) do
/* my_turn(i) uses Who(], Order[], and done[] arrays to check */
/* whether Task 7; is the next one to enter the critical session or not. */
begin
first-count := first-count +1;

if second-count > 0

(% @Ak A B FRREL)

>23/00

%5 K

AR s Mjiw;;w;ﬁ

A4 9L A8 A& K

33 >\¢

pu u)

then signal(second-delay)
~ else signal(mutex);
wait(first-delay);
first-count := first-count - 1;
second-count := second-count +1;
if first-count > 0
then signal(first-delay)
else signal(second-delay);
wait(second-delay);
second-count := second-count - 1;
end;
S; /¥ enter critical session */
done[i]=true;

exit_routine(); /* releases semaphores */

For clearness and grading, please highlight or underline your answer of each

subproblem in your answer sheet. (3% 74k A{.} + BF BE HhAZ T NRREY K

£ AP E)

(a) [6 points] Please give the initial values of three semaphores mutex,
first-delay, and second-delay.

(b) [4 points] Please give the initial values of first-count and second-count.

(c) [15 points] Please complete the code of task 7z; by writing the pseudo code
of exit_routine().

(d) [5 points] S uppose we i mplement my_ turn(i) as shown in the following

code.
my_turn(i) {
for k=1 to Order[i]-1 do
if ldone[Who[k]]
then return(false);
end for;
return(true);
}

Consider t he s ituation in w hich several t asks e xecute my_trun() as s how
above at the same time. Is the above code correct in terms of multiple access
of done[] array? If you think there is no problem when several tasks access
done[] array at the same time, please say “no problem” in your answer sheet;

R
w K
smj

N
4!

Bz kR ‘ : % ‘ - kA
SR gy wn RALH L HEMOBEE e

18

Otherwise, if you think there might be some “mutual exclusion” problem for
my_turn(), please say “not correct” in your answer sheet.

2.[20 points] Consider a segmentation-with-paging address translation scheme
shown in the figure below. This scheme provides each process with eight segments
each with a maximum size of 1 Mbytes (2% bytes). This scheme is to be
implemented on an architecture that supports a maximum physical memory size of
64 Mbytes (2° bytes). The architecture provides a single base register (i.e. STBR)
from which to start the address translation process. In the architecture, pages of
size 4 Kbytes (22 bytes) are to be used. Note that one word in the memory has
four bytes and a logical/physical address specifies one word in the memory. The
segment table and page table are not necessarily implemented in main memory,
hence are not constrained by word-wide (i.e. 4-byte) access. Please compute the
width (i.e. bit length) of variables s, d, p, f, and q in the figure. For clearness and
grading, please highlight or underline your answer of each variable in your

answer sheet. GE{E{EE B HAAE BB EE - DIFITMEL)

b

logical address

d
/\ ©%
. N z

lno d
segment | page table
length base trap r

segment table

STBR

Memory

f F—{ f] a]—

physical address

page table
for segment s

(HFoinAME FHfrR)

3

EIER RN | Boi b e T e B
QD #FE (o) pimn pox A W T J o G4 ABIL %

SN
m

3. Assume the following operand notation: (24%)
Rn refers to register n in register mode.
#x refers to the number x in immediate mode.
(x) refers to the number x used in direct mode, i.e. as an address.
x(Rn) refers to register n and immediate x in displacement mode.
@(x) refers to the number x used in indirect mode, i.e. as an address of an address.
@x(Rn) refers to register Rn and number x used in displacement deferred mode, i.e. the value

obtained from displacement mode access is used as an address for the desired value.

Given the following “memory map” with values given in Hex, and that the register R1 contains 4. Please
use the little Endian format to show the contents of the two-word register R7 after each instruction in the

a)~h) instructions does ?

Byte Address | Content
18 00
17 03 a) LW R7,#16
16 04 b) LW R7,(16)
15 0A c) LW R7,@(16)
14 80 d) LBU R7,#14
3 00) LB R7,(14)
T 00 f) LH R7,4(R1)
11 00 g) LHU R7, @4(R1)
T 04 h) LW R7,(12)
F 62
E 56 Note o
D 1 Literals in the instructions are in decimal.
C 10 LW: load word
B 00 LH: load half word
LHU: load half word unsigned
A 00)
9 00 LB: load byte .
2 04 LBU: load byte unsigned
7 00
6 00
5 00
4 08
3 00
2 00
1 01
0 00

4. Between 1982 and 1992 the CPU performance of the x86 family of microprocessors improved by a factor
of 25. Note that this does not count improvements in the memory hierarchy and 1/0. (26%)
a) What is the average yearly CPU performance increase? (10%)
b) Assuming that during that time the CPU clock rate increased from 5 Mhz to 50 Mhz, but that no new
instructions were introduced, to what other factor would you attribute the rest of the performance
increase? (6%5)

¢) What yearly percentage increase would you attribute to each of the two factors in part b) ? (10%)

N

