國立成功大學九十四學年度碩士班招生考試試題

編號: 7 320 系所: 資訊工程學系

科目:計算機組織與系統

- 1. Use Booth algorithm to calculate the following: (20%)
 - a. multiplicant \times multiplier = 10111 \times 10011 = -9 \times -13 = 117

Iteration	Step	Multiplicand	Product		
0	initial values	10111	00000 1001 <u>1 0</u>		
			-10111		
1		10111			
2		10111			
3		10111			
4		10111			
5		10111			
			<u>00011 10101</u> 1		

- b. Prove the correctness of the Booth algorithm. The main idea of Booth algorithm is that a sequence of k 1's (k additions) is replaced by one addition and one subtraction. You must explain why only one subtraction (without subtraction) is needed for the last sequence of 1's when multiplier is negative.
- 2. What is the biased single precision IEEE 754 floating point format of 0.9375? What is purpose to bias the exponent of the floating point numbers? (8%)
- 3. Why do the ripple carry adders perform additions in a sequential manner?

 Carry-lookahead adder is one of the fast-carry schemes to improve the adder performance over ripple carry adders. What is the principle of these fast-carry schemes? Briefly explain. (7%)

(背面仍有題目,請繼續作答)

burst

time

5

2

8

7

process

W

X

Y

Z

系所:資訊工程學系

科目:計算機組織與系統

- 4. Assume the following: (15%)
 - (1) k is the number of bits for a computer's address size (using byte addressing)
 - (2) S is cache size in bytes
 - (3) B is block size in bytes, $B = 2^b$
 - (4) A stands for A-way associative cache

Figure out the following quantities in terms of S, B, A, and k:

- a. the number of sets in the cache
- b. the number of index bits in the address, and
- c. the number of bits needed to implement the cache
- 5. Four processes, W, X, Y and Z, arrive at a computer at time 2, 3, 0 and 5, respectively. The CPU burst time of them is listed in the right table (time unit: milliseconds):

Please ignore process switching overhead and assume that only a process runs at a time. Determine the average waiting time and average turnaround time for each of the scheduling algorithms: (a) First-come, following first-served (FCFS) scheduling, (b) Preemptive shortest-job-first (SJF) scheduling, (c) Nonpreemptive shortest-job-first scheduling, and (d) Round-Robin scheduling (time quantum is 4, CPU is equally shared by processes). (24%)

Draw the following table and fill in the time for each algorithm in your answer sheet.

國立成功大學九十四學年度碩士班招生考試試題

編號: 1320 系所:資訊工程學系

科目:計算機組織與系統

Algorithms	average waiting time	average turnaround time		
(a) FCFS				
(b) Preemptive SJF				
(c) Nonpreemptive SJF				
(d) Round-Robin				

6. Suppose a system contains three types of resources and five processes. Three resources, X, Y and Z have 5, 2, and 7 instances, respectively. The snapshot of the system is as follows:

Process	Current Allocation			Maximum Demand		
	X	Y	Z	X	Y	Z
P0	1	1	1	3	1	1
P1	1	0	0	1	0	2
P2	0	0	1	1	_1	2
P3	0	1	1	1	1	2
P4	3	0	2	4	1	3

Answer the following questions using the banker's algorithm: (14%)

- (a) Is the system in a safe state? If yes, list all possible safe sequences.
- (b) If a request from process 2 arrives for resource (0,0,1), can the request be granted immediately? Why?
- (c) If a request from process 1 arrives for resource (0,0,1), can the request be granted immediately? Why?
- 7. (a) What is convoy effect? (4%)
 - (b) What is memory thrashing? (4%)
 - (c) What is race condition for critical section problem? (4%)