Hmwi¥%+i¥$iﬁfﬁﬁ&#ﬂﬁﬂ %, BB H
| R E e AECRAIESR ME:HNMERIRG ! |

T D-ﬂm“?'cn%ﬁmfﬁ PrSAS—

1. (10%) The following program tries to copy words from the address in reglster $a0 - |
to the address in register $21 and count the number of words copied in register $v0.

The program stops copying when it finds a word equal 16 0: You do not have to
preserve the contents of registers $v1, $a0, and $al. This termmqtmg word should be
copied but not counted.

loop: Iw $vit, O($aO)
- addi $v0,$v0, 1
SW $v1, 0($a1)
addi $a0, $a0, 1
addi $a1, $a1,1
bne $v1, $zero loop 3
There are multiple bugs in this MIPS program. Please fix them and turn in bug free
version. :

2. (20%) (a) Fill in the following table using the index provided in the keywords
(1)-(5) to determine the 3-bit Booth algorithm. Assume that you have both the
multlphcand and twice the multiplicand already in registers.. . :

(1) None (2) Add the multiplicand (3) Add twice the multiplicand (4) Subtract the
multiplicand (5) Subtract twice the multiplicand (8%)

(b) Assume x is “010101,” and y is “011011,”. Please use 2-bit and 3 bit Booth
algorithm to do the y*x operation. (8%)

(c) Will the 3-bit Booth algorithm always have a fewer operations than the 2-bit
Booth algorithm? Justify your answer by a brief description. (4%)

Current bits - Previous bit Operation
8+] ai 3|
0 0 0
0 0 1
0 I 0
0 I 1
1 0 9
i 0 1
i I 0
1 I 1

.f

(b RAATRE L ﬂfé)

3. (10%) Define zero, de-normalized number, floating point number, infinity, and
NaN (Not a Number) in IEEE 754 double precision format by giving the range of
their exponents and 31gn1ﬁcands respectwely Fill in your answer in the following

table. (t&%@ ”‘(lgﬂﬁ J:/f‘F a)

Zero de-normalized | floating point infinity NaN

exponent

significand

(Ranfg A8 HaRES)

1w 279 xmE ﬁm&!ﬁ f‘ o ME: m&ﬁmm i ‘ -
| SRS T IO - tj'umzm D‘:ﬁﬂﬁm cmzm:m B

4, (1 0%)Con51der a CPU w1th the followmg mstructlons

Instrucﬂon Example” Meaning
add .. - add$1,82,$3 = $1=$2433 - - -
sub . .sub §1, $2, $3 . $1-=...$2'-=$-§5, o R

There are ﬁve pipeline : stages ,

€1 Y IF-Instruction fetch
(2) ID-Instruction decode and register fetch RETEAC
(3) EX-Execution or calculate effective addrqss o v
(4) MEM-Access data memory ce e
(5) WB-Write back to registers S
Now, consider a program segment S :
add $1, $2, $3 S
sub $4, §1, $5 .
- add 86, 81,87 .
add $8, $4, $1
sub $2, $7, $9

(a) If we stall the pipeline when there is a data hazard {no forwarding), how many

cycles will it: takew complete this progra.m segﬁient @raw Thé resultmg plpelme '

(5%) ERE

(b) Is it possible to produce the same result in fbw eyclés by reordenng insmtctlon‘?
If s0, show the reordering, depiot the new pipeline and mdleate‘ﬁow many Cycles it
will take to complete this program ségment S (S%) e

| BIEHASATESFRALARLARKE XL B3R
W 279 KA RALEER o BB MERE R

ARERTELSEINNR: OUEE - ZFTEA . (MAEHRHTR) _‘
THEASK

AR REM - BB RE—BAERARMIT + RARY -
ﬂﬂMﬂ#&nﬂzﬁ&iﬁﬁilﬁsﬁé;ﬂﬁ'§#
(BrEM B AL)

5. (14 %) Determining the optimal page size of a memory requires balancing some competing factors,
The memory overhead of paging consists of the page table (increased as page size gets smaller) and
the internal fragmentation waste (increased as page size gets larger). Suppose that the average
process size is 2M bytes, page entry size is 4 bytes, the average wasted memory in the last page of
each process due to internal fragmentation is a half page. SR :

(a) What is the optimal page size, in bytes? (10%)

(b) What is the minimum overhead, in bytes, for an average process? (4%)

For clearness and grading, please highlight or underline vour answer in your answer sheet. (3 #
HEXETABCRTHRGER > RARY)

6. (16 %) Consider a snapshot of the system as shown below, Upon the next request, P; makes a
request for (0 4 2 0) and is granted immediately. What is the minimum nuniber of initial instances
(i.e. the total number of mstances before any process entérs the system) for each resource type to

make sure the system still in a safe state after P;‘s request is granted? (FRMMU@bcdF X &

i

- Allocation _ Max

ABCD ~ 'ABCD
Py - 0012 0112
P, 1000 1750
P, 1354 2456
Py 0432 . 0752
P, 0014 . 0656

7. (20 %) Consider the following synchronization probiem. In this problem, there is one dispatcher
who decides the access ordering among # tasks (7;, 7, ..., 7,). The dispatcher does so by randomly
generating a total-ordering sequence Who[l..s], in which Who[#] = means the i-th task entering the
critical section is 7. In addition, we provide another array Order[l..n] to perform the inverse
function. Namely, Order[i]= j means 7; is the j-th task in the ordering. Naturally, Order[Who[i]]=i
and Who[Order[/]] =/, Vi, j. Task % may enter the critical section if each task 7 whose Order{/] <
Order[i] has exited the critical section. If a task tried to enter the critical section before its
predecessor(s) enter the critical section, it waits. We also provide an array of status flag, done{l..n]
(initialized to all faise), to mdxcate the execution status of each task. After a task 7 finishes its

%‘:’\E?%JEEE B é’kﬁ‘i'f’ﬁgl

nnﬁgk&nﬁrs&##xmaa y_:#aau (. HoSR|
w270 ReRGIESR . mMECHWmEesRe . o . 0]
ARBEETALAHNS : DT ol () | e g e

execution, it sets its corresponding flag done[,@,t%true. Wc also make the following assumptions:
o Onilyone task is allowed at a time in the critical sectzon

e The dlspatehepand eawta&v&ay &e&%e i Tl s b
e The mspawhetﬁmmémé cittoshé 'anymm& bl AR TR
o The d1spatcher calls Generate Seqiefﬁcﬁ‘z@‘ﬂd Wwof {0 set up the values in Order[l .n) and

Who[1..n] arrays.

.Baskd' on'the ‘abové desctiption; the declaration of vanables and the. pseudo code of the dlspatcher .
andeachtaskmngenbelow SR IR TR D

.
L

s - Bt e hoed s

' lmﬁphorenmnx,,ﬁntvddﬂyiﬁmnd-dolay, : R
int first-count, second-count, Order{1..x], Who[L.#t};-, . - '
boolean done[l..n]; e R I TDNPHTI NE \'; TR
Dispatcher:
~ Gegerate | Seqpencqcmder, Whoy

Task 5:
cowa(omtex); e L L |
; ; While (nay t;;m(i);tﬁuc} C I N
v e /* my | unn{l)lsaﬁmchonthatusesWhoﬂ,Order[] anddonel]arrays"/ _

T _I lgmchmkwhether'raskqmﬁemxtonétuentefthemhcalsessmnornot."'!':' '

[

" first-count —ﬁrst—count +1; ”
if second-count > 0 ﬁlen augnal(second—delay)
. clse sxgnal(mutzx),
wait(first-delay);
first-count ;= ﬁrst-cdunt 1;
second-count := secdnd-ommt +1;
iffirst-count >0 then signal(first-delay)
“else signal(second-delay); '
wait(second-delay);
' sécdﬁd—ébﬁﬁf:*iaebondocount-l;' . T e RTINS
e By u“‘enternﬁﬁcllsessian‘/ - LTI e R
* dopp{iletrag; /% ny mOchwksmedwﬂgrmtosetth:kue/falsevalue “/ e
,your_g.k retine. Mqo,/*gdemswmaphmes s e SRS

-"-.‘ -~ -

~ Plesse complete the codsiof task. r,bywmmg the pseudo mde of your._exit_routine_ hereﬁ) M
‘--mwmawmaﬁ ’»%‘ﬁu’u#ﬁ?ﬁ-ﬁi} SRR A

-k

