287

國立成功大學九十六學年度碩士班招生考試試題

共 2頁,第 頁

編號: 28

284 系所:資訊工程學系,學學學和於

科目:計算機數學

本試題是否可以使用計算機:

可使用 , 以不可使用

(請命題老師勾選)

Part I. Linear Algebra (50%)

- 1. (10 %) A matrix A is said to be skew symmetric if $A^T = -A$. Let A be an $n \times n$ skew symmetric matrix.
 - (a) If A = B + C where B is symmetric and C is skew symmetric, find B and C. (5%)
 - (b) If n is odd, show that A must be singular. (5%)
- 2. (15%) Let $C = [\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ and $D = [\mathbf{b}_1, \mathbf{b}_2]$, where $\mathbf{u}_1 = (1, 0, -1)^T$, $\mathbf{u}_2 = (1, 2, 1)^T$, $\mathbf{u}_3 = (-1, 1, 1)^T$ and $\mathbf{b}_1 = (1, -1)^T$, $\mathbf{b}_2 = (2, -1)^T$. For each of the following linear transformations L from R^3 to R^2 , find the matrix representing L with respect to the ordered bases C and D.
 - (a) $L(\mathbf{x}) = (x_3, x_1)^T$ (5%)
 - (b) $L(\mathbf{x}) = (x_1 + x_2, x_1 x_3)^T (57)$
 - (c) $L(\mathbf{x}) = (2x_2, -x_1)^T (5/6)$
- 3. (10%) Let A be a 7×5 matrix with rank equal to 4 and let \mathbf{b} be a vector in \mathbb{R}^8 . The four fundamental subspaces associated with A are R(A), $R(A^T)$, N(A), and $N(A^T)$.
 - (a) What is the dimension of $N(A^T)$ (2%) and which of the other fundamental subspaces is the orthogonal complement of $N(A^T)$ (3%)?
 - (b) What is the dimension of $N(A^T A)$ (2%)? How many solutions will the least squares system $A\mathbf{x} = \mathbf{b}$ have? (3%).
- 4. (15%) Solve the initial value problem $\mathbf{Y}' = A\mathbf{Y}, \mathbf{Y}(0) = \mathbf{Y}_0$, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix}, \quad \mathbf{Y}_0 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$$

(背面仍有題目.請繼續作答)

287

國立成功大學九十六學年度碩士班招生考試試題

共 2 頁,第2頁

編號:

系所:資訊工程學系, 医学炎统计 284

本試題是否可以使用計算機: □可使用

公不可使用

(請命題老師勾選)

Discrete Mathematics 2007 (50%) Part II.

- [10%] In how many ways can be the integers 1, 2, 3, ..., n be arranged in a line so that none of the patterns 12, 23, 34,..., (n-1)n occurs?
- [15%] Let S be a set containing n distinct objects. Verify that $e^{x}/(1-x)^{k}$ is the exponential 2. generating function for the number of ways to choose m of the objects in S, for $0 \le m \le n$, and distribute these objects among k distinct containers, with the order of the objects in any container relevant for the distribution.
- [15%] Decide whether the graphs G and H are isomorphic. Prove that your answer is 3. correct.

- 4. Let $f,g:Z^+ \to R$, where $f(n) = 4^{\lg n} + n + 3n^{1/\lg n}$, $g(n) = \begin{cases} 1, & \text{for } n \text{ odd} \\ n^5, & \text{for } n \text{ even} \end{cases}$
 - (1) [5%] Choose correct statements in the following:

(a)
$$f(n) = O(n)$$
, (b) $f(n) = O(n^2)$, (c) $f(n) = O(n^3)$, (d) $f(n) = \Omega(n)$, (e) $f(n) = \Omega(n^2)$, (f) $f(n) = \Omega(n^3)$, (g) $f(n) = \Theta(n)$, (h) $f(n) = \Theta(n^2)$, (i) $f(n) = \Theta(n^3)$.

(d)
$$f(n) = \Omega(n)$$
, (e) $f(n) = \Omega(n^2)$, (f) $f(n) = \Omega(n^3)$

(g)
$$f(n) = \Theta(n)$$
, (h) $f(n) = \Theta(n^2)$, (i) $f(n) = \Theta(n^3)$

(2) [5%] Verify that $f \notin O(g)$ and $g \notin O(f)$.