w28 B AR A AT R AL H A R

RAHHB EAIRER
FABE HEBERER

pE - ®|H

FHEEN 0307 WK 1

¥ BARER A6E O

WRA] SRR

"o H M A S

RABAT) WEBREA— BT - BHREANSABEE KR - FURTFHS -
[Can B5

! _—
[2
- : —

4 S
L 5

6

7 —_—
F
N ‘ |

I [10%)] Translate the beq instructions shown in the following code into an 32-bit binary instruction,
provided that the opcode of beq is 0x04.

Loop:

End:

add $8,$9,%10
add $8,$9,510
add $8,$9,510
add $8,$9,$10
add $8,59,%510
add $8,$9,810
beq $0,$9,Loop
add $9, $0, $9

2. [10%] Let the value of the program counter (i.c., PC) be 0xCFO1FC00. What is the target address of

the instruction, j 0x%20.

3. [10%)] The table (Table 1) shown as follows is the main control of a single-cycle processor which
cannot execute the J instruction. What are the values of RegDst, ALUsrc, MemtoReg, Reg-

Write, MemRead, Branch and MemWrite for executing the 3 instruction?

CH @ 34 4R I R 1R 55)

L

218 LEFTFE FRFRE ZS LS L EE LRt # (H ®]H

AR HATRER
HEAE ¢ HERERERM SRAN 0307 B 1

¥ FAMER ARE OF MR SRR

Table 1: Control of a single-cycle processor

Reg | Mem | Mem
Instruction RegDst | AluSrc | MemtoRep | Write | Read | Write | Branch | ALUOp1 | ALUOpPO
R-format 1 o o 1 o o o 1 o
1w o 1 1 IR o o o o
s x | 1 x) o 1 0 0 o
beg x o x o 0 o 1 o 1
4. [20%] A multiprocessor system is a system consisting of several (identical) processors in a single

machine. A shared- ry ip isa i machine in which processors share the

single memory address space. The in a shared y
through shared memory variables, with all processors capable of accessing any memory location via
load (e.g., 1w) and store (or sw) instructions.

Single address space multiprocessors come in two styles. The first takes the same time to access
memory no matter which processor requests it and no matter which memory block is requesled Such
machines are called uniform memory access (UMA) i or symmelri

(SMP). In the second style, some memory accesses are faster than others depending on whlch pro-
cessor asks for which word. Such machines are called nonuniform memory access (NUMA) multi-
processors. Figure 1 shown as follows illustrates an example of a UMA machine in which there are n

processing nodes. These n nodes are interconnected with a shared bus, and each of the nodes can
access any memory location in the main memory through the bus. Communication due to coordina-
tion of sharing data among processors also relies on the bus. Notably, in Figure 1, each processor is
associated with a local cache memory.

w218 B2 A RS At A1 A S = (& %35]
TR - HRTRER

HHME B EMERERS P
W EEREE ARUE O R MRS

‘ Processor Processor | Processor

P Py P,

| Cache Cache | Cache

Bus
|
Memory
e
Figure 1: AUMA il ing n ing nodes

Conceptually, each processor can fetch a memory block from memory and cache the memory block
in its local cache to reduce the latency of upcoming memory references to the block. Cache cohe-
rence protocols are the methods to guarantee the consistency of the content of a memory block repli-
cated by different caches.

Figure 2 shows an example of a cache coherence protocol (may not be efficient) which is represented
as a finite state machine. In the coherence protocol, each cache block has one of the following three
states:

® Clean: This cache block is clean.
® Dirty: This cache block is dirty due to the store instruction.
® Invalid: This cache block does not have valid data.

The three states of the protocol in Figure 2 shows the state transitions based on processor actions as

opposed to transitions based on bus operations. In default, each cache block is in the state of
Invalid.

(4 @45 47 8 B S 46 5) |

my 218 B AARBAT A AAEED LA R £ é=~$4ﬁ’
REHER - R ADER |

BREE ARG AN 0307 - K 1
M BEREN : A OF R SR
Write Miss Read Hit

See Tnvalidation of

urite Miss gnbuL@
ean

ee Read/Write M:ssonBus
(Wte back the block)

)

\ﬂ Read Miss
Invalid

Read/Write Miss

Invalid

Read/Write Miss'
(wite dirty block back
tomemory)

write Hit;
send Invalidataon

Read/Write Hit

(a) Cache state transition due to signals from processors. (b) Cache state transition due to signals from bus.

Figure 2: The write-invalidate cache coherence protocol

Transitions between the states of a cache block happen on read misses. write misses. or write hits:
read hits do not change cache state. Consider a read miss by a processor Pi (where 1 < i < n). If the
read miss is 1o an Invalid block in Pi’s cache, the read miss is then satisfied by reading from
memory. and the state of the fetched block is set to Clean in Pi's cache (see Figure 2(a)). If the read
miss goes to a Clean block (in Pi’s cache). then Pi invalidates the block and fetches the requested
block from memory directly without caching. Otherwise, if the read miss is to a Dirty block, /i
writes back the Dirty block to memory and invalidates the block in its cache. Similarly, Pi then
fetches the requested block from memory directly without caching. On the other hand, while Pi has a
read miss, Pi injects the read miss signal onto bus (Figure 2(b)). All the caches in the other processors
‘monitor the read miss signal to see if the memory block requested by Pi is in their caches. If one has
acopy and it is in the Dirty state, then the block is written back to memory and its state is changed
to Invalid. Notably, in this protocol the memory block is read directly from memory whether a
copy is in a cache or not in this protocol.

Consider write hits. A write hit to a Dixrty block causes no protocol action (Figure 2(a)). A write hit
to a Clean block causes the cache to send an Invalidation signal onto bus to knock out any
other copies, modify the portion of the cache block, and change the state of the cache block to Dizr-
ty (see Figures 2(a) and (b)).

Regarding write misses, a write miss due to Pi to an Invalid block in Pi’s cache causes /i to send

w218 BLAAABATASE A EHE LA REA # b E ®EE
REFAR WATEER

FHBE FHEEEREERA SHEM : 0307+ I
W OBEMER ARE 7 R ERHER

a write miss signal and update the block in memory directly without caching (Figure 2(a)). Mean-
while, if there exist caches other than Pi having the block in the Clean state, then by snooping the
write miss signal these caches invalidate their cached blocks (Figure 2(b)). Possibly, Pi’s write miss
goes to a cache having the requested block in the Dirty state. If so. that cache writes back and then
invalidates the block. A write miss by Pi to a Clean block causes Pi’s cache to invalidate the block,
and update the requested block in memory directly (Figure 2(a)). Similarly, if there exist other caches
having the block in the Clean state, these caches invalidate their cached blocks (Figure 2(b)). If a
write miss to a Dirty block, then the protocol shown in Figure 2(a) writes back the Dirty block,
resets the state of the cache block as Invalid, and then updates the requested block directly in
memory.

Now consider the following portions of two different programs running at the same time on two pro-
cessors in a 2-node UMA i ! ing the cache protocol illustrated

above. Assume that before this code is run, both x and y are the integer value of 15.

Processor 1. .., x=x+2;y=x+y; ..
Processor 2: ..., y=x+2; ...

What are the possible resulting values of x and y?

5. [10%] Consider a file currently consisting 100 blocks. Assume that the file control block (and the in-
dex block, in the case of indexed allocation) is already in memory. For the contiguous, linked, and
indexed (single-level) allocation strategies, calculate how many disk block IO operations are re-
quired to add a block to the middle of the file (i.e., the new block will become block 50 of the file). In
the contiguous allocation case, assume that there is no room to grow at the beginning but there is
room to grow at the end. Also assume that the block to be added is stored in memory.

6. [10%)] Consider the following page reference string: 1,2,3,4,2,1,5,6,2,1,2,3.7.6,3,2,1,2,3.6.
How many page faults would occur for the LRU replacement algorithm, assuming 4 frames and all
the frames are initially empty.

=

[10%)] Consider a system running ten 1/O-bound user tasks and one CPU-bound user task. Assume
that the [/O-bound tasks issue an /O operation once for every millisecond of CPU computing and
that each I/O operation takes 10 milliseconds to complete. Also assume that the context switching
overhead is 0.Imillisecond and that all processes are long-running tasks. What is the CPU utilization

(@154 % B R EE)

[21 LRSS A AP FRAEHS LA KR # 6 E MR
REHE RALRBR

FEEEE A AMSORERTE HEE 0307 R 1
M BETER AR OF RTINS

for a round-robin scheduler when the time quantum is 10 milliseconds? Note that the CPU utilization
is defined as the percentage of CPU time spent on user tasks.

8. [10%] Describe the immutable-shared-file semantics for shared access to files that are stored on re-
mote file systems. What are the ges and di; of the

9. [10%] Consider the following set of processes with different CPU-burst time and arrival time:
Process Burst Time _ Arrival Time

Pl 10 0
P2 1 1
P3 3 2
P4 1 3
P5 5 4

heduling aleorithm?

‘What is the waiting time of the processes under the pi ptive SJF

