※ 考生請注意：本試題 响 \square 不可 使用計算機

1．$[10 \%]$ Find the probability of randomly selecting 3 good apples in succession from a basket containing 10 apples of which 4 have spoiled．

2．$[15 \%]$ A coin is tossed twice．Let X denote the number of heads on the first toss and Y the total number of heads on the 2 tosses．If the coin is unbalanced and a head has 40% chance of occurring，find
（a）the joint probability distribution of X and Y ；
（b）the marginal distributions of Y ；
（c）the probability that at least 1 head occurs．
3．$[10 \%]$ Prove that the variance of a random variable X is $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$
4．［10\％］An electrical firm manufactures a 100 －watt light bulb，which，according to specifications written on the package，has a mean life of 900 hours with a standard deviation of 50 hours．At most，what percentage of the bulbs fail to last even 700 hours？Assume that the distribution is symmetric about the mean．［Hint：use Chebyshev＇s theorem］

5．An experiment often consists of repeated trials，each with two possible outcomes that may be labeled success or failure．The process is referred to as a Bernoulli process．Each trial is called a Bernoulli trial．
［ 10% ］（a）Please describe four properties of the Bernoulli process．
［5\％］（b）Please write out the formula of the distribution $b(x ; n, p)$ of binomial random variable X ，the number of successes in n independent trials．A Bernoulli trial can result in a success with probability \boldsymbol{p} and a failure with probability $q=1-p$ ．
$[10 \%]$（c）Please use binomial expansion of $(q+p)^{n}$ to show that $\sum_{x=0}^{n} b(x ; n, p)=1$ ．
6．$[10 \%]$ Let X be a binomial random variable with probability distribution $b(x ; n, p)$ ．Prove that Poisson distribution is a limiting form of the binomial distribution，i．e．， when $n \rightarrow \infty, p \rightarrow 0$ ，and $\mu=n p$ remains constant，$b(x ; n, p) \rightarrow p(x ; \mu)$ ．

7．$[20 \%]$ Find the moment－generating function of the binomial random variable X and then use it to verify that $\mu=n p$ and $\sigma^{2}=n p q$ ．

