－Data Structures（ 50% ）
1．（ 30% ）
For the AOE（Activity on Edge）network described by the table，（a）what is the earliest time the project can finish？（15\％）（b）Please list all critical paths．Note that state 1 is the starting state and state 10 is the goal state．（ 15% ）

Activity	From state	To state	Time
a_{1}	1	2	5
a_{2}	1	3	5
a_{3}	2	4	3
a_{4}	3	4	6
a_{5}	3	5	3
a_{6}	4	6	4
a_{7}	4	7	4
a_{8}	4	5	3
a_{9}	5	7	1
a_{10}	5	8	4
a_{11}	6	10	4
a_{12}	7	9	5
a_{13}	8	9	2
a_{14}	9	10	2

2．（20\％）Given the postorder sequence and the inorder sequence of a binary character tree is ELGQPXRM and EGLMPQRX，（a）is the tree uniquely defined？（10\％）（b） Please draw an example binary tree satisfying the above two sequence．（ 10% ）

二，Algorithms（50\％）
3．（20\％）Solving the recurrence $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$ using Θ notation．

4．（20\％）Show how to sort n integers in the range 0 to $n^{3}-1$ in $O(n)$ time．

5．（10\％）The Fibonacci numbers are defined by recurrence

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2} \text { for } i \geq 2
\end{aligned}
$$

Give an $O(n)$－time dynamic－programming algorithm to compute the nth Fibonacci number．

