Probability and Statistics 2012 （100\％）

1．A producer of a certain type of electronic component ships to suppliers in lots of twenty．Suppose that 70% of all such lots contain no defective components， 20% contain one defective component，and 10% contain two defective components．A lot is selected and two components from the lot are randomly selected and tested and neither is defective．
1．1 Let A be the event that two components are selected from the lot，N be the event that a lot contains no defective component， \boldsymbol{O} be the event that a lot contains one defective component， \boldsymbol{T} be the event that a lot contains two defective components．Please find $\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{N}), \mathrm{P}(\boldsymbol{A} \mid \boldsymbol{O})$ and $\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{T}) .[15 \%]$
1．2 Using answers in 1．1，what is the probability that one defective component exists in the lot？［5\％］
（Please write your answers in fraction with integer numerator and integer denominator．）

2．Consider the joint density function

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{lr}
\frac{16 y}{x^{3}}, & x>2, \\
0, & 0<y<1 \\
0, & \text { elsewhere } .
\end{array}\right.
$$

2．1 Calculate the mean of its marginal distributions $\mathrm{g}(\mathrm{x})$ and $\mathrm{h}(\mathrm{y})$ ．［10\％］
2．2 Calculate $\mathrm{E}(\mathrm{XY})$ and covariance σ_{XY}［ 10% ］

3．Assuming that a Bernoulli trial can result in a success with probability p and a failure with probability $q=1-p$ ．If a random variable X represents the number of successes in n independent trials．
3．1 What is the probability distribution of X ？Please specify the name and mathematical form of this probability distribution．［10\％］
3．2 Please derive mean and variance of the probability distribution in 3.1 using expectation operator． ［10\％］

4．If 10% of the residents in a U．S．city prefer a white telephone over any other color available．
4．1 Please find out the probability that among the next 5 telephones installed in that city， 1 is found to be white．［5\％］
4．2 Please find out the probability that among the next 10000 telephones installed in that city，between 900 and 989 inclusive will be white（hint：use the included table to find your answer）．［10\％］
4．3 Please explain and examine that in 4.2 ，which probability distribution you used and whether such approximation is applicable．［5\％］

5．A random sample of 100 records in the United States during the past year showed an average life span of 72 years．Assuming a population standard deviation of life span is 8 years and we are interested to know whether this indicates that the mean life span today is greater than 70 years．
5．1 What are our null and alternative hypotheses？［10\％］
5．2 Please examine whether our data indicate that the average life span in the United States is greater than 70 years when the level of significance is 0.05 ？［10\％］

系所組別：朢學資訊研究所

						Apperdix A		Proofs		
	ble A． 3 （continuex）		Arcas	er the	，rmal					
	． 00	． 01	． 02	． 03	． 04	． 05	． 06	． 07	． 08	09
0.0	0.5000	0.5040	0.5080	0.51	0.51	0.51	0.52	0.52	0.53	0.5359
0.1	0.5398	0.5438	0.5478	0.55	0.55	0.55	0.56	0.56	0.57	0.57
0.2	0.5793	0.5832	0.5871	0.591	0.594	0.50	．	．	0.61	0.6
0.3	0.6179	0.6217	0.625	0.62	． 03	0.630	0.640	0.64	0.64	0.65
0.4	0.6554	0.6591	0.6658	0.666	0.670	0.673	0.6772	0．6808	0．6844	0.6879
5	0.6915	0.6950	0.6985	． 70	． 70	0.70	0.71	0.715	0.71	0.72
0.6	0.7257	0.7291	0.7324	0.7357	0.738	0.7422	0.74	0.7486	0.7517	0.75
0.7	0.7580	0.7611	0.7642	0.7	0.77	0.773	0.77	0.779	0.78	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8116	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.826	0.828	0.831	0.83	0.83	0.8389
1.0	0.8413	0.84	461	0.8485	0.85	0.85	0.85	0.85	0.85	0.86
1.1	${ }^{0.8643}$	0.8665	0.8680	0.870	0.872	0.8749	0.877	0.879	0.881	0.8830
1.2	0.8849	0.8869	0.8888	0.880	0.8925	0．894	0.896	0.898	0.898	0.9015
1.3	． 9052	0.9049	． 9066	0.908	0.009	0.9115	0.913	0.914	0.91	0.9177
1.4	0.9192	0.9207	0.9222	． 923	0.9251	0.926	0.92	0.929	0.93	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.41	0.94	0.94	0.9
1.6	0.9452	0.9463	0.9474	0．9484	0.9495	0.9505	0.951	0.9525	0.95	0.9545
1.7	0.9554	0.0564	0.9573	0.9582	0.9591	0.059	0.960	0.9616	0.962	0.9633
1.8	0．9641	0．9649	0.9656	0.3664	0.9671	0.967	0.96	0.969	0.969	0.9700
1.9	0.9713	0.9719	0.9726	0.973	0.973	0.97	0.97	0.97	0.97	0.97
2.0	0.9772	0.9778	0.9783	0.97	0.97	0.97	0.98	0.98	0.9	0.9
2.1	0.9821	0.9826	0.9830	0.9834	0．483	$0.98+2$	0.984	0.9850	0.98	0.9857
2	0.9861	0.9864	0.9868	0.9871	0.987	0.987	0.988	0.9884	0.9887	0.9890
2.3	0.9883	0.9890	0.9898	0.9901	0.990	0.990	0.990	0.9911	0.9913	0.9916
4	0.9918	0.9920	ט． 1992	0.9925	0.992	0.992	0.993	，ma	0.0	0.9036
2.5	0.9938	0.9940	0.9911	0.994	0.994	0.99	0.99	0.991	0.9	0.9952
2.6	0.9953	0.9995	0.995	0.995	0.995	0．996	0.98	0.99	0.996	0.9964
2.7	0.9965	0.9960	0.9967	0.996	0.9960	0.9970	0.9971	0．9972	0.997	0.9974
2.8	0．9974	0.9975	0.9976	0.9977	0．9977	0.9078	0．9979	0.9979	0.9981	0.9981
9	0.9981	0.998	0.9082	0.988	0.9984	0.9984	0.988	0.9985	0.998	0.9
0	0.9987	0.9987	0.9987	0.9988	0.998	0.9989	0.998	0.9849	0.9990	0.9990
3.	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9493	0.9993
3.2	0.9993	0.9993	0.0994	0．9994	0.999	0．999	0.999	0.993	0.098	0.9995
3.3	0.9995	0.9995	0.0995	0.9996	0.9996	0.9996	0.9996	0．9996	0．9996	0.9997
	0.9997	0．9997	0.9997	0.9997	0．999	0.990	0.99	0.98	0.9	0.9

