編號: 208	國立成功大學 102 學年度碩士班招生考試試題	共1 頁,第1頁
系所組別:醫學資訊研究所		
考試科目:應用電子學		考試日期:0223,節次:3
※ 考生請注意:本試題	夏不可使用計算機	
註:請提供詳細推導過程,並帶入計算數字; <u>不需求出開根號之數字</u> 。		
1. (28%) Consider the following circuit in Fig. 1, with circuit parameters $V^+ = 5$ V, $V^- = -5$ V, $R_S = 4$ k Ω , $R_D =$		

- 2 k Ω , $R_L = 4$ k Ω , and $R_G = 50$ k Ω . The transistor parameters are: $K_P = 1$ mA/V², $V_{TP} = -1$ V, and $\lambda = 0$. (a) Plot the equivalent circuit when v_i is 0 V (4%). Calculate I_{DQ}, V_{SGQ}, V_{SD(SAT)} (6%); (b) Assuming the frequency of input signal is within an appropriate range, so the impedance of all external capacitors and the transistor capacitances can be neglected. Plot the small-signal equivalent circuit (4%). Find g_m (4%), small-signal gain $A_v = V_o/V_i$ (6%), and input resistance R_i (4%).
- (30%) The transistor parameters for the circuit shown in Fig. 2 are: β=180, V_{BE(ON)}=0.7 V, Early voltage for Q₁ and Q₂ are V_A=∞ and for Q₃ and Q₄ are V_A= 100V. (a) Determine R₁ and R₂ such that I₁ = 0.5 mA and I_Q=140 µA. (8%). (b) Plot the small-signal equivalent circuits when v₁=v₂ (5%) and when v₁≠v₂ (5%). (c) Derivate the common-mode input resistance. (6%) (d). Derivate the common-mode voltage gain. (6%)
- 3. (20%) Design a DC power supply with output voltage of 12 V. Provide a complete block diagram of the circuit, describe function of each sub-circuit and your design consideration. (20%)
- 4. (22%)You will apply ideal operational amplifiers to design circuits. (a) What are the characteristics for an operational amplifier to be ideal?(5%) (b) Design and plot an instrumentation amplifier circuit and explain how to control the voltage gain. (10%) (c) Design and plot a two-pole low pass filter circuit. (7%)

