編號: 47	國立成功大學一〇〇學年度碩士班招生考試試題 共 2 頁,第1頁
系所組別: 考試科日:	
考試科目:	
※ 今生調/	主意:本試題 ☑可 □不可 使用計算機 請勿在本試題紙上作答,否則不予計分
	(I) <u>Blank Filling</u> : 50% ; 5% for each problem.
	1. The thermodynamic property derived by the zero th law is
	2. The work for a gas expanding from 1L to 3L at 2 atm isJ,
	the change of internal energy isJ and q_p isJ.
	3. The work for a gas dropping pressure from 2 atm to 1 atm at 3L isJ,
	the change of internal energy isJ and q_v isJ.
	4.** For one mole of an ideal gas undergoes isothermal and reversible expansion from
	24L to 36L at 1 atm. The thermodynamic quantities of this process are:
	$q=$, w=, $\Delta E=$, $\Delta H=$, and
	$\Delta S=$
	5. The chemical property obtained by measuring rate constants at different temperatures is
	6. The physical properties obtained by measuring equilibrium constants at different
	temperatures are
	7. The Joule-Thomson and iosothermal Joule-Thomson coefficients, are defined by
	and, respectively. The two coefficients can be
	correlated by the thermodynamic expression
	8. The operator for momentum and position are and, respectively.
	9. The origin of uncertainty principle based on operators is
	10. The origin of uncertainty principle based on duality of matters is
	(北工石士西日 土地族东北尔、
	(背面仍有題目,請繼續作答)

共2頁,第2頁

系所組別: 化學系

47

编號:

考試科目: 物理化學

※ 考生請注意:本試題 ☑可 □不可 使用計算機

II) <u>Answer the following problems:50%</u> 8% for each problem except for problem 7; $\int \sin^2 ax dx = \frac{1}{2}x - (1/4a)\sin 2ax + Const. \qquad \int x^n \exp(-ax) dx = n!/a^{n+1}.$

Please give your answers following the numbering of problems

1. (a) Derive $\lambda = h/p$ through quantum mechanic treatments of the "particle-in-a-box" model and (b)show that the expression, $\lambda = h/p$, given originally by de Broglie can rationalize the Bohr's assumption of quantization of angular momentum in Bohr atoms.

2. Employing the normalized wavefunction $\psi_{100} = (\pi a_o^3)^{-1/2} \exp(-r/a_o)$, find (1) expectation values of r and r², and (2)the value of uncertainty in r.

3. Give the plot of Gibbs energy against "the reaction process" for the reaction of the Reactants/Products system. Correlate G with the equilibrium constant (K).

4. Show that heat flow simultaneously from a high-temperature (T_h) heat reservoir to a low-temperature heat reservoir (T_l)

- 5. Derive the statistic definition of entroy, $S = k \ln \Omega$.
- Derive the rate law for R→P following second order of R.
 And give the expression correlating t_{1/2} with the rate constant.
- 7. Show that $1Latm \approx 101J$ (2%)