說明：1．請依題序作答並標明題號，計算題需寫出計算過程，只寫答案不給分

2． $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=0.082 \mathrm{~atm} \mathrm{~L} \mathrm{~K}{ }^{-1} \mathrm{~mol}^{-1}, \mathrm{~h}=6.626 \times 10^{-34} \mathrm{Js}$
（一）單選題 12 題，每題 6 分，共 72 分，答錯倒扣 1 分
（1） 3.0 mole of ideal gas $\left(\mathrm{C}_{\mathrm{v}, \mathrm{m}}=3 \mathrm{R} / 2\right)$ at $25^{\circ} \mathrm{C}$ and 10.0 atm expands adiabatically and irreversibly against a constant 1.0 atm pressure．What＇s the final temperature（in K ）？
（A） 190.7
（B）212．4
（C） 226.5
（D） 232.8
（E） 238.5
（2）Consider a system of N molecules with energy levels $\varepsilon_{\mathrm{n}}=\mathrm{n} \varepsilon$ ，where n is an integer，with value $0 \sim 10$ ．What＇s the fraction of molecules staying at the ground state at $T=\infty$ ？
（A） 0
（B） 0.09
（C） 0.17
（D） 0.22
（E） 0.30
（3）If 10.9 kJ of heat is released when 2.0 mole of supercooled water at $-15.0^{\circ} \mathrm{C}$ and 1.0 atm ．freezes， calculate $\Delta \mathrm{S}_{\text {sys }}$（in $\mathrm{J} / \mathrm{mol}, \mathrm{K}$ ）for the fusion（熔解）of ice at $-15^{\circ} \mathrm{C}$ ．Assume the molar heat capacities for $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 37.5 and $75.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ ，respectively，and are temperature independent．
（A）22．1
（B） 21.1
（C）25．2
（D） 30.1
（E） 19.9
（4）Express $(\partial \mathrm{P} / \partial \mathrm{S})_{\mathrm{V}}$ in terms of $\mathrm{T}, \mathrm{C}_{\mathrm{v}}, \kappa$ ，and α ．
（A）$\alpha \kappa C_{v} / T$
（B）$T \alpha C_{v} / \kappa$
$(\mathrm{C}) \alpha \mathrm{C}_{\mathrm{v}} / \mathrm{T} \kappa$
（D） $\mathrm{T} \alpha / \mathrm{C}_{\mathrm{v}} \mathrm{K}$
（E）$T \kappa / \alpha C_{V}$
（5）The partial molar volume of $\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ at 298 K is given by

$$
\mathrm{V}_{\mathrm{B}} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)=32.280+18.216\left(\mathrm{~m} / \mathrm{m}^{0}\right)^{1 / 2}
$$

，where m is the molality of $\mathrm{K}_{2} \mathrm{SO}_{4}$ ．If the molar volume of pure water at 298 K is $18.079 \mathrm{~cm}^{3} / \mathrm{mol}$ ， calculate the partial molar volume（in $\mathrm{cm}^{3} / \mathrm{mol}$ ）of water at $\mathrm{m}=1.0 \mathrm{~mol} / \mathrm{Kg}$ ．
（A） 16.25
（B）17．18
（C） 17.56
（D） 17.97
（E） 18.03
（6）A particle is in a state described by the wave function $\psi=(\cos a) e^{i k x}+(\sin a) e^{-i k x}$ ，where a is a parameter．What＇s the value of cos a if it were 70% certain that the particle had linear momentum－kћ？
（A） 0.548
（B） 0.837
（C） 0.707
（D） 0.3
（E） 0.866
（7）What＇s the expectation value of linear momentum（in $\mathrm{k} \%$ ）in Problem 6 ？
（A） 0.3
（B）-0.7
（C）-0.4
（D）-0.3
（E） 1.2
（8）Determine the commutator of the operators $\mathrm{d}^{2} / \mathrm{dx}^{2}$ and x^{2} ．
（A） 2 x
（B） 4
（C） 2
（D） 4 x
（E） 6
（9）Which term is likely to lie lowest in energy for the configuration $n p^{1}{ }^{n}{ }^{1}$ ？
（A）${ }^{3} \mathrm{~F}_{4}$
（B）${ }^{3} \mathrm{~F}_{2}$
（C）${ }^{3} \mathrm{P}_{2}$
（D）${ }^{1} \mathrm{D}_{2}$
（E）${ }^{1} \mathrm{P}_{1}$
※ 考生請注意：本試題可使用計算機，並限「考選部核定之國家考試電子計算器」機型
（10）Consider the reaction mechanism

```
\(A+A \rightleftharpoons A^{*}+A \quad\) (forward rate constant: \(k_{a}\), backward rate constant: \(k_{a}{ }^{\prime}\) )
\(A^{*} \quad \rightarrow P \quad\) (forward rate constant: \(k_{b}\) )
```

If $k_{a}{ }^{\prime}[A] \gg k_{b}$ ，derive the expression of $d[P] / d t$ ．
（A） $\mathrm{k}_{\mathrm{a}}[\mathrm{A}]^{2}$
（B）$k_{a}{ }^{\prime} k_{b}[A]^{2} / k_{a}$
（C） $\mathrm{k}_{\mathrm{a}}[\mathrm{A}] /\left(\mathrm{k}_{\mathrm{a}}{ }^{\prime} \mathrm{k}_{\mathrm{b}}\right)$
（D）$k_{a} k_{b}[A] / k_{a}{ }^{\prime}$
（E）$k_{a} k_{b}[A]^{2} / k_{a}{ }^{\prime}$
（11）Consider the reaction $A+2 B \rightarrow P$ ，where rate $=k_{r}[A][B]$ and $[B]_{0} \neq 2[A]_{0}$ ．Which of the following is a correct expression of k_{r} ？

$$
\begin{aligned}
& (\mathrm{A})\left([\mathrm{B}]_{0}-2[\mathrm{~A}]_{0}\right)^{-1} \ln \left([\mathrm{~A}]_{0}[\mathrm{~B}] /\left([\mathrm{A}][\mathrm{B}]_{0}\right)\right) \quad(\mathrm{B})\left([\mathrm{B}]_{0}-2[\mathrm{~A}]_{0}\right) \ln \left([\mathrm{A}]_{0}[\mathrm{~B}] /\left([\mathrm{A}][\mathrm{B}]_{0}\right)\right) \\
& \text { (C) }\left([B]_{0}-2[A]_{0}\right)^{-2} \ln \left([A][B]_{0} /\left([A]_{0}[B]\right)\right) \quad(D)\left([B]_{0}-2[A]_{0}\right)^{-2} \ln \left([A]_{0}[B] /\left([A][B]_{0}\right)\right) \\
& \text { (E) }\left([\mathrm{B}]_{0}-2[\mathrm{~A}]_{0}\right)^{-1} \ln \left([\mathrm{~A}]_{0}[\mathrm{~B}]^{2} /\left([\mathrm{A}][\mathrm{B}]_{0}^{2}\right)\right)
\end{aligned}
$$

（12）At $25^{\circ} \mathrm{C}$ ，the rate constant k of the reaction

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{HIO}(\mathrm{aq})
$$

is $12.2 \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~min}^{-1}$ at an ionic strength of 0.0525 ．What would happen to the rate constant as the ionic strength decreases？
（A）k decreases．
（B） k increases
（C）k stays the same（D） k increases first and then decreases．
（E）cannot be judged．

（二）計算題2題，共28分

（13）Consider a van der Waals gas with $a=3.61 \mathrm{~atm} \mathrm{~L}^{2} / \mathrm{mol}^{2}$ and $b=0.0429 \mathrm{~L} / \mathrm{mol}$ ．
（a）Estimate the Boyle temperature（in K ）．
（b）Calculate $\Delta \mathrm{H}_{\mathrm{m}}$（in kJ／mol）when the pressure on the gas is decreased from 200.0 atm to 1.0 atm at 300 K ．（Note： $\mathrm{C}_{\mathrm{p}, \mathrm{m}}=7 \mathrm{R} / 2, \mu=[(2 \mathrm{a} / \mathrm{RT})-\mathrm{b}] / \mathrm{C}_{\mathrm{p}, \mathrm{m}}$ ）
（14）The hamiltonian for a point mass of m rotates in a cycle（with $\mathrm{V}=0$ ）can be simplified as $\hat{H}=-\left(\hbar^{2} / 2 I\right) d^{2} / d \phi^{2}$ ，where $I=\mathrm{mr}^{2}$ ，and ϕ is the azimuthal angle．Derive the normalized general solution and the energy in terms of quantum number．

