系所組別: 化學系

47

编號:

考試科目: 物理化學

共2頁,第/頁

※ 考生請注意:本試題可使用計算機,並限「考選部核定之國家考試電子計算器」機型

說明: 1. 請依題序作答並標明題號,計算題需寫出計算過程,只寫答案不給分 2. R= 8.314 J K⁻¹ mol⁻¹ = 0.082 atm L K⁻¹ mol⁻¹, h=6.626x10⁻³⁴ Js

(一)單選題12題,每題6分,共72分,答錯倒扣1分

(1) 3.0 mole of ideal gas (C_{v,m}=3R/2) at 25 °C and 10.0 atm expands adiabatically and irreversibly against a constant 1.0 atm pressure. What's the final temperature (in K)?
(A)190.7 (B)212.4 (C)226.5 (D)232.8 (E)238.5

(2) Consider a system of N molecules with energy levels ε_n= nε, where n is an integer, with value 0 ~ 10. What's the fraction of molecules staying at the ground state at T =∞?
(A)0 (B)0.09 (C)0.17 (D)0.22 (E)0.30

(3) If 10.9 kJ of heat is released when 2.0 mole of supercooled water at -15.0°C and 1.0 atm. freezes, calculate ΔS_{sys} (in J/mol, K) for the fusion (熔解) of ice at -15 °C. Assume the molar heat capacities for H₂O(s) and H₂O(l) are 37.5 and 75.3 J K⁻¹ mol⁻¹, respectively, and are temperature independent. (A)22.1 (B)21.1 (C)25.2 (D)30.1 (E)19.9

- (4) Express $(\partial P/\partial S)_V$ in terms of T, C_v, κ , and α . (A) $\alpha \kappa C_v/T$ (B) $T\alpha C_v/\kappa$ (C) $\alpha C_v/T\kappa$ (D) $T\alpha/C_v\kappa$ (E) $T\kappa/\alpha C_v$
- (5) The partial molar volume of $K_2SO_4(aq)$ at 298 K is given by $V_B/(cm^3 mol^{-1}) = 32.280 + 18.216 (m/m^o)^{1/2}$

,where m is the molality of K_2SO_4 . If the molar volume of pure water at 298 K is 18.079 cm³/mol, calculate the partial molar volume (in cm³/mol) of water at m= 1.0 mol/Kg.

- (A)16.25 (B)17.18 (C)17.56 (D)17.97 (E)18.03
- (6) A particle is in a state described by the wave function $\psi = (\cos a)e^{ikx} + (\sin a)e^{-ikx}$, where a is a parameter. What's the value of cos a if it were 70 % certain that the particle had linear momentum -kħ?

(A)0.548 (B)0.837 (C)0.707 (D)0.3 (E)0.866

- (7) What's the expectation value of linear momentum (in kħ) in Problem 6?
 (A)0.3 (B)-0.7 (C)-0.4 (D)-0.3 (E)1.2
- (8) Determine the commutator of the operators d²/dx² and x².
 (A)2x (B)4 (C)2 (D)4x (E)6
- (9) Which term is likely to lie lowest in energy for the configuration np¹nd¹?
 (A) ³F₄ (B) ³F₂ (C) ³P₂ (D) ¹D₂ (E) ¹P₁

(背面仍有題目,請繼續作答)

編號	:	47	國立成功大學一〇一學年度碩士班招生考試試題	共2頁,第2頁
系所	組別	: 化學系		
考試	科目	: 物理化	學	考試日期:0226 , 節次:1
*	考生韵		試題可使用計算機,並限「考選部核定之國家考試電子計算器」	機型
	(10) (Consider th	e reaction mechanism	
		A+A =	\implies A* + A (forward rate constant: k _a , backward rate constant: k _a ')	
		A*	\rightarrow P (forward rate constant: k _b)	
-	1	$f k_a'[A] >>$	> k _b , derive the expression of d[P]/dt.	
	($(A)k_a[A]^2$	$(B)k_{a}'k_{b}[A]^{2}/k_{a}$ $(C)k_{a}[A]/(k_{a}'k_{b})$ $(D)k_{a}k_{b}[A]/k_{a}'$ $(E)k_{a}k_{b}[A]^{2}/k_{a}'$	
	(11) (Consider th	e reaction $A + 2B \rightarrow P$, where rate= $k_r[A][B]$ and $[B]_o \neq 2[A]_o$. Which of	the following
	i	s a correct	expression of k _r t?	
		(A)([B] _o -2	$[A]_{o})^{-1}\ln([A]_{o}[B]/([A][B]_{o})) (B)([B]_{o}-2[A]_{o})\ln([A]_{o}[B]/([A][B]_{o}))$	
		(C)([B] ₀ -2	$[A]_{o})^{-2}\ln([A][B]_{o}/([A]_{o}[B])) (D)([B]_{o}-2[A]_{o})^{-2}\ln([A]_{o}[B]/([A][B]_{o}))$	
	1	(E)([B] ₀ -2[$[A]_{o})^{-1}\ln([A]_{o}[B]^{2}/([A][B]_{o}^{2}))$	
	(12) At 25 °C, the rate constant k of the reaction			
		H	$H_2O_2(aq) + I'(aq) + H^+(aq) \rightarrow H_2O(l) + HIO(aq)$	
	i	s 12.2 L ² n	nol ⁻² min ⁻¹ at an ionic strength of 0.0525. What would happen to the r	ate constant
	8	is the ionic	strength decreases?	
	(A)k decrea	ases. (B)k increases. (C)k stays the same (D)k increases first and t	hen decreases.
	(E)cannot b	be judged.	

(二)計算題2題,共28分

- (13) Consider a van der Waals gas with a= 3.61 atm L²/mol² and b= 0.0429 L/mol.
 (a)Estimate the Boyle temperature (in K).
 - (b)Calculate ΔH_m (in kJ/mol) when the pressure on the gas is decreased from 200.0 atm to 1.0 atm at 300 K. (Note: C_{p,m}= 7R/2, μ = [(2a/RT)-b]/C_{p,m}) (14%)
- (14) The hamiltonian for a point mass of m rotates in a cycle (with V=0) can be simplified as $\hat{H}=-(\hbar^2/2I)d^2/d\phi^2$, where I= mr², and ϕ is the azimuthal angle. Derive the normalized general solution and the energy in terms of quantum number. (14%)