编號: 46	國立成功大學103學年度碩士班招生考試試題 共 2 頁,第
系所組別: 化	_學系
跨試科目: 物	四理化學 考試日期:0223,節炎
※ 考生請注意	意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分
	ln2=0.7 ln3=1.1 ln10=2.3 R=8.3 J K ⁻¹ mol ⁻¹ =0.08 L atm K ⁻¹ mol ⁻¹
	(1) (a) Write down the third law of thermodynamics.
	(b) According to the Boltzmann formula for entropy, write down the entropy (in
	J K^{-1}) for the following state: a nearly perfect, atomic crystal containing $6x10^{23}$
	atoms at 0 K with one atom not at its lattice site. (6分)
(3	2) Write down the entropy change (in J K ⁻¹) when argon at 27 $^{\circ}$ C and 1.0 atm in a
	container of volume 0.5 dm ³ is allowed to expand to 1.0 dm ³ and is
	simultaneously heated to 327 °C. (10 分)
(1	3) For the orbital energy of H atom, $E_n = -2.2 \times 10^{-18} / n^2$ (J). Write down the (a)
	energy of 3d orbital, (b) orbital angular momentum of a 3d electron, (c)
	components of the angular momentum in the direction of an external magnetic
	field (z axis), (d) magnetic moments on the z axis, and (e) ionization energy of a
	H atom at ground state. (f) Describe the state as the electron is at n= ∞ , i.e. E=0.
	(14 分)
(*	4) For the particle in an one-dimensional box with the boundaries at x=0 and L,
	$\psi(x)=(2/L)^{1/2}$ sin (n $\pi x/L$). Write down the positions of nodes inside the box with
	the particle at n=5. (5分)
(5) Cu ²⁺ + 2e ⁻ → Cu ε ^o =0.34 V, Fe ³⁺ + e ⁻ → Fe ²⁺ ε ^o =0.77 V
	(a) Write down the galvanic cell potential (ϵ°_{cell}) (b) Write down the cell
	potential as [Fe ²⁺]=1.0 M, [Fe ³⁺]=0.1 M, [Cu ²⁺]=10.0 M at 25 °C. (6 分)
(6) For N₂(g) + 3H₂(g) ←→ 2NH₃(g) (27 °C)
	It is known that ΔG =-21846 J mol ⁻¹ at [H ₂]=1.0 atm, [N ₂]= 1.0 atm, and
	[NH ₃]=10.0 atm. Write down the equilibrium constant (K). (6分)
	(背面仍有題目, 請繼續作答)

编號:

國立成功大學103學年度碩士班招生考試試題

共2頁,第2頁

系所組別: 化學系

46

考試科目: 物理化學

考試日期:0223,節次:1

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

(7) For a linear rotor, given that the energy difference between J=3 and J=5 is 54 cm⁻¹, write down the energy difference (in cm⁻¹) between J=2 and J=4.

(6分)

(6分)

(8) Spin-orbit coupling constant = 12 cm⁻¹. Write down ΔE in cm⁻¹.

(9) The reaction $2AB + C_2 \rightarrow A_2B + C_2B$ has the mechanism of

$$2 AB \xrightarrow{k_1} A_2B_2 \qquad A_2B_2 + C_2 \xrightarrow{k_2} A_2B + C_2B$$

Calculate the differential rate law (hint: using steady state approximation. Show your calculation procedure). (6 分)

- (10) Draw potential energy curves to explain (a) fluorescence and(b)Franck-Condon principle. (10 分)
- (11) (a)What is the gross selection rule of pure rotational spectra (b) Explain the Stark effect.
 (10 分)
- (12) In absorption vibration-rotation spectra of polyatomic molecules, there may exist P, Q and R bands. Explain these bands. But for Raman vibration-rotation spectra, there may have O, Q, and S branches. Explain them. (10 分)
- (13) Prove that the Joule-Thomson effect is a process without change of entropy. (5 分)