$$
\ln 2=0.7 \ln 3=1.1 \ln 10=2.3 \quad R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=0.08 \mathrm{Latm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

（1）（a）Write down the third law of thermodynamics．
（b）According to the Boltzmann formula for entropy，write down the entropy（in $\mathrm{J} \mathrm{K}^{-1}$ ）for the following state：a nearly perfect，atomic crystal containing $\mathbf{6 \times 1 0}{ }^{\mathbf{2 3}}$ atoms at 0 K with one atom not at its lattice site．
（2）Write down the entropy change（ in J K ${ }^{-1}$ ）when argon at $27^{\circ} \mathrm{C}$ and 1.0 atm in a container of volume $0.5 \mathrm{dm}^{3}$ is allowed to expand to $1.0 \mathrm{dm}^{3}$ and is simultaneously heated to $327^{\circ} \mathrm{C}$ ．
（3）For the orbital energy of H atom，$E_{n}=-2.2 \times 10^{-18} / n^{2}(J)$ ．Write down the（a） energy of 3d orbital，（b）orbital angular momentum of a 3d electron，（c） components of the angular momentum in the direction of an external magnetic field（ \mathbf{z} axis），（ d ）magnetic moments on the z axis，and（e）ionization energy of a H atom at ground state．（f）Describe the state as the electron is at $n=\infty$ ，i．e．$E=0$ ．
（4）For the particle in an one－dimensional box with the boundaries at $x=0$ and L ， $\psi(x)=(2 / L)^{1 / 2} \sin (n \pi x / L)$ ．Write down the positions of nodes inside the box with the particle at $\mathrm{n}=5$ ．
（5） $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} \quad \varepsilon^{0}=0.34 \mathrm{~V}, \quad \mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} \quad \varepsilon^{0}=0.77 \mathrm{~V}$
（a）Write down the galvanic cell potential（ $\left.\varepsilon_{\text {cell }}^{0}\right)$
（b）Write down the cell potential as $\left[\mathrm{Fe}^{2+}\right]=1.0 \mathrm{M},\left[\mathrm{Fe}^{3+}\right]=\mathbf{0 . 1} \mathrm{M},\left[\mathrm{Cu}^{2+}\right]=10.0 \mathrm{M}$ at $25{ }^{\circ} \mathrm{C}$ ．
（6）For $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})$ $\left(27^{\circ} \mathrm{C}\right)$
It is known that $\Delta G=-21846 \mathrm{~J} \mathrm{~mol}^{-1}$ at $\left[\mathrm{H}_{2}\right]=1.0 \mathrm{~atm},\left[\mathrm{~N}_{2}\right]=1.0 \mathrm{~atm}$ ，and $\left[\mathrm{NH}_{3}\right]=10.0$ atm．Write down the equilibrium constant（K）．
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
（7）For a linear rotor，given that the energy difference between $\mathrm{J}=3$ and $\mathrm{J}=5$ is 54 cm^{-1} ，write down the energy difference（in cm^{-1} ）between $\mathrm{J}=2$ and $\mathrm{J}=4$ ．
（8）Spin－orbit coupling constant $=12 \mathrm{~cm}^{-1}$ ．Write down ΔE in cm^{-1} ．

（9）The reaction $2 A B+C_{2} \rightarrow A_{2} B+C_{2} B$ has the mechanism of
$2 A B \underset{k_{-1}}{\stackrel{K_{1}}{\rightleftharpoons}} A_{2} B_{2} \quad A_{2} B_{2}+C_{2} \xrightarrow{k_{2}} A_{2} B+C_{2} B$
Calculate the differential rate law（hint：using steady state approximation．Show your calculation procedure）．
（10）Draw potential energy curves to explain（a）fluorescence and （b）Franck－Condon principle．
（11）（a）What is the gross selection rule of pure rotational spectra（b）Explain the Stark effect．
（12）In absorption vibration－rotation spectra of polyatomic molecules，there may exist P，Q and \mathbf{R} bands．Explain these bands．But for Raman vibration－rotation spectra，there may have \mathbf{O}, \mathbf{Q} ，and \mathbf{S} branches．Explain them．
（13）Prove that the Joule－Thomson effect is a process without change of entropy．

