※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。

說明：1．請依題序作答並標明題號。第二部分計算題需寫出計算過程，只寫答案不給分 。

2． $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}=0.082 \mathrm{~atm} \mathrm{LK}^{-1} \mathrm{~mol}^{-1}$
（一）單選題 10 題，每題 6 分，共 60 分，答錯倒扣 1 分
（1）Consider a regular solution made of liquid A and B ，where $\ln \gamma_{A}=5 x_{B}{ }^{2}$ and $\ln \gamma_{B}=5 x_{A}{ }^{2}$ ．Calculate H^{E}（in $n R T$ ）at $x_{A}=0.3$ ．
（A） 0.21
（B） 0.38
（C）0．63
（D） 0.84
（E）1．05
（2）A certain gas obeys the equation of state $P(V-n b)=n R T$ ，where b and R are constants．If the pressure and temperature are such that $V_{m}=5 \mathrm{~b}$ ，calculate $\ln \phi$ ，where ϕ is the fugacity coefficient．
（A） 0.18
（B） 0.25
（C） 0.29
（D）0．34
（E）0．38
（3）Express $(\mathrm{OH} \mathcal{P})_{T}$ in terms of T, V ，and α ．
（A） $\mathrm{V}(1+\mathrm{T} \alpha)$
（B） $\mathrm{T}(1-\mathrm{V} \alpha)$
（C）$V /(1-T \alpha)$
（D）$V(1-T \alpha)$
（E）V／（T $\alpha-1)$
（4）At $25^{\circ} \mathrm{C}$ ，the density of a 50% by mass ethanol－water solution is $0.914 \mathrm{~g} / \mathrm{cm}^{3}$ ． Given that the partial molar volume of water in the solution is $17.4 \mathrm{~cm}^{3} / \mathrm{mol}$ ， calculate the partial molar volume（in $\mathrm{cm}^{3} / \mathrm{mol}$ ）of the ethanol．
（A） 56.3
（B） 32.5
（C）57．4
（D）41．6
（E） 48.5
（5）The normalized wave functions for a particle confined to move on a circle are $\psi(\phi)=(1 / 2 \pi)^{1 / 2} e^{-i m \phi}$, where $m=0, \pm 1, \pm 2, \ldots$ and $0 \leqq \phi \leqq 2 \pi$ ．Determine $<\phi>$ ．
（A） 0
（B）$\pi / 2$
（C）π
（D） $5 \pi / 4$
（E） $3 \pi / 2$
（6）A particle is in a state described by the wave function $\psi(x)=(2 a)^{1 / 2} e^{-a x}$ ，where a is a constant and $0 \leqq x \leqq \infty$ ．Determine the expectation value of the commutator of the position and momentum operators．
（A） 0
（B）iћ
（C）－i $i \hbar$
（D）$Ћ / 2$
（E）－2ih
（7）Suppose that an atom has 3 electrons in different orbitals．What are the possible values of the total spin quantum number S ？
（A） $3 / 2,1 / 2,1 / 2$
（B） $1,0,3 / 2$
（C） $3 / 2,1 / 2,0$
（D） $1,0,1 / 2$
（E） $3 / 2,1,1 / 2$
（8）How many of the following transitions are allowed in the normal electronic emission spectrum of a many－electron atom：（a）${ }^{3} \mathrm{D}_{2} \rightarrow{ }^{3} \mathrm{P}_{1},(\mathrm{~b}){ }^{3} \mathrm{P}_{2} \rightarrow{ }^{1} \mathrm{~S}_{0},(\mathrm{c})^{3} \mathrm{~F}_{4} \rightarrow{ }^{3} \mathrm{D}_{3}$ ， $(d){ }^{3} P_{3 / 2} \rightarrow{ }^{2} S_{1 / 2},(e)^{3} D_{3} \rightarrow{ }^{1} P_{1}$ ？
（A） 0
（B）1
（C） 2
（D）3（E）4
（9）Consider the dimerization $2 A \rightleftharpoons A_{2}$ with the forward rate constant k_{1} and backward rate constant k_{2} ．What＇s the expression of the relaxation time？
（A）$\left(k_{1}+4 k_{2}[A]_{\text {eq }}\right)^{-1}$
（B）$\left(k_{2}-4 k_{1}[A]_{\text {eq }}\right)^{-1}$
（C）$\left(k_{2}+4 k_{1}[A]_{e q}\right)^{-1}$
（D）$\left(k_{2}+2 k_{1}[A]_{e q}\right)^{-1}$
（E）$\left(4 k_{2}-k_{1}[A]_{e q}\right)^{-1}$

第2頁，共2頁

（10）The diffusion coefficient of I_{2} in hexane at $25^{\circ} \mathrm{C}$ is $4.05 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ ．Estimate the time （in s ）required for an iodine molecule to have a root mean square displacement of 1.0 cm．
（A） 1.2×10^{4}
（B） 2.2×10^{3}
（C） 2.4×10^{4}
（D） 7.3×10^{3}
（E） 4.1×10^{3}
（二）計算題 3 題，共 40 分
（1）The cycle involved in the operation of an internal combustion engine is called the Otto cycle．Air can be considered to be the working substance and can be assumed to be a perfect gas．The cycle consists of the following steps：（1）reversible adiabatic compression from A to B ，（2）reversible constant－volume pressure increase from B to C due to the combustion of a small amount of fuel，（3）reversible adiabatic expansion from C to D ，and（4）reversible and constant－volume pressure decrease back to state A ．
（a）Derive an expression for the efficiency of the cycle in terms of T_{A}, T_{B}, T_{C} ，and T_{D} ， assuming that the heat is supplied in Step 2.
（b）Same as（a），but in terms of V_{A} and V_{B} ．
（c）Determine the changes in entropy of the system in step 2 and 4 ，respectively． Assume that in state $\mathrm{A}, \mathrm{V}=4.00 \mathrm{dm}^{3}, p=1.00 \mathrm{~atm}$ ，and $T=300 \mathrm{~K}$ ，that $V_{\mathrm{A}}=10 \mathrm{~V}_{\mathrm{B}}$ ， $p_{\mathrm{C}} / p_{\mathrm{B}}=5$ ，and that $\mathrm{C}_{\mathrm{p}, \mathrm{m}}=7 / 2 \mathrm{R}$ ．
（2）Write down the secular determinant for linear H_{3} within the Huckel approximation， and estimate the binding energy．
（3）Consider the formation and decay of an excited singlet state：

Absorption	$S+h v_{i} \rightarrow S^{*}$	absorbation rate $l_{a b s}$
Fluorescence	$S^{*} \rightarrow S+h v_{f}$	rate constant k_{f}
Internal conversion	$S^{*} \rightarrow S$	rate constant $k_{1 C}$
Intersystem crossing	$S^{*} \rightarrow T^{*}$	rate constant $k_{15 C}$
Quenching	$S^{*}+Q \rightarrow S+Q$	rate constant k_{Q}
Derive the expression of the fluorescence quantum yield ϕ_{f} ．		
Obtain the ratio $\phi_{f, 0} / \phi_{f}$,	where $\phi_{f, o}$ is measured in the absence of a	
quencher Q ．		

