編號: 48 國立成功大學 104 學年度碩士班招生考試試題			
系所組別:化學系甲組			
考試科目:物理化學	考試日期:0212,節次:1		
第1頁,共2頁			
※ 考生請注意:本試題不可使用計算機。	赫答案卷(卡)作答,於本試題紙上作答者,不予計分。		
不給分 。	號・第二部分計算題需寫出計算過程・只寫答案		
2. R= 8.314 J K ⁻¹ mol ⁻¹ = 0.0	$82 \operatorname{atm} \operatorname{L} \operatorname{K}^{-1} \operatorname{mol}^{-1}$		
(一)單選題 10 題,每題 6 分,共 60 分	· 答錯倒扣1分		
(1) Consider a regular solution made of lice			
$\ln \gamma_{\rm B} = 5 x_{\rm A}^2$. Calculate H ^E (in nRT) at x _i			
(A)0.21 (B)0.38 (C)0.63 (D)0.			
	te P(V-nb)=nRT, where b and R are constants. If the at $V_m = 5$ b, calculate $\ln \phi$, where ϕ is the fugacity		
(A)0.18 (B)0.25 (C)0.29 (D)0.3	34 (E)0.38		
(3) Express $(\partial H / \partial P)_T$ in terms of T, V, and α			
(A)V(1+T α) (B)T(1-V α) (C)V/(1-T			
(4) At 25 °C, the density of a 50 % by mass			
	f water in the solution is 17.4 cm ³ /mol,		
calculate the partial molar volume (in			
(A)56.3 (B)32.5 (C)57.4 (D)41.6	(E)48.5		
(5) The normalized wave functions for a p	article confined to move on a circle are		
$\psi(\phi) = (1/2\pi)^{1/2} e^{-im\phi}$, where m =0, ±1	, ±2,and 0 $\leq \phi \leq 2\pi$. Determine $< \phi >$.		
(A)0 (B) $\pi/2$ (C) π (D) $5\pi/4$			
(6) A particle is in a state described by the	e wave function $\psi(x) = (2a)^{1/2} e^{-ax}$, where a		
is a constant and $0 \leq x \leq \infty$. Determin	e the expectation value of the commutator of the		
position and momentum operators.			
(A)0 (B)iħ (C)-iħ (D)iħ/2 (I	E)-2iħ		
(7) Suppose that an atom has 3 electrons	in different orbitals. What are the possible values		
of the total spin quantum number S?			
(A)3/2, 1/2, 1/2 (B)1, 0, 3/2 (C)3,	′2, 1/2, 0 (D)1, 0, 1/2 (E)3/2, 1, 1/2		
	are allowed in the normal electronic emission		
	$A)^{3}D_{2} \rightarrow {}^{3}P_{1}, (b)^{3}P_{2} \rightarrow {}^{1}S_{0}, (c)^{3}F_{4} \rightarrow {}^{3}D_{3},$		
(d) ${}^{3}P_{3/2} \rightarrow {}^{2}S_{1/2}$, (e) ${}^{3}D_{3} \rightarrow {}^{1}P_{1}$?			
(A)0 (B)1 (C)2 (D)3 (E)4			
	A_2 with the forward rate constant k_1 and backward		
rate constant k_2 . What's the express			
(A) $(k_1+4k_2[A]_{eq})^{-1}$ (B) $(k_2-4k_1[A]_{eq})^{-1}$ (E) $(4k_2-k_1[A]_{eq})^{-1}$	$(C)(k_2+4k_1[A]_{eq})^{-1}$ (D) $(k_2+2k_1[A]_{eq})^{-1}$		

	子 107 子十及限工	班招生考試試題	
		考試日其	月:0212,節次:1
)2.2x10 ³ (C)2.	4x10 ⁴ (D)7.3x10 ³	(E)4.1x10 ³	
ved in the opera- be considered to e cycle consists from A to B, (2) re- bustion of a sm ad (4) reversible pression for the at the heat is su but in terms of he changes in er in state A, $V = 4$ d that $C_{p,m}=7/2$	be the working sub of the following ste eversible constant-val and constant-volum efficiency of the cy pplied in Step 2. V_A and V_B . htropy of the system 4.00 dm ³ , $p = 1.00$ and R.	estance and can be assumpts (1) reversible adiabation (3) reversible adiabatic encepts adiabatic encepts adiabatic encepts adiabatic encepts adiabatic encepts and the terms of T_A , T_B , T_C , in in step 2 and 4, respect to the terms and $T = 300$ K, that V	ned to be a tic from B to C expansion ck to state A. and T_D , (6%) (5%) tively. $Y_A = 10V_B$, (4%)
		within the Huckel approx	(12%)
ion S cence S I conversion	$+ hv_i \rightarrow S^*$ $S^* \rightarrow S + hv_f$	absorbation rate l _{abs} rate constant k _f	
ing	$5^* \rightarrow T^*$ $5^* + Q \rightarrow S + Q$ ne fluorescence qua	rate constant k _{isc} rate constant k _q	(8%)
	for an iodine mo $(-)2.2x10^3$ (C)2. (for an iodine molecule to have a root (-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(befficient of I_2 in hexane at 25 °C is 4.05×10^{-9} m ² s ⁻¹ . Estimate for an iodine molecule to have a root mean square displaced b) 2.2×10^3 (C) 2.4×10^4 (D) 7.3×10^3 (E) 4.1×10^3 (E) 4.1×10^3 (C) 2.4×10^4 (D) 7.3×10^3 (E) 4.1×10^3 (E) 4.1×10^3 (