系 所: 化學系 考試科目: 分析化學

考試日期:0206,節次:4

第1頁,共7頁

編號: 51

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Part I. Single or Multiple choice questions. Each question has one or more answers. (65%, 5 points for each question.)

- 1. Which of the following statements about the figure of merit for analytical methods is/are correct?
 - (A) Calibration sensitivity refers to the slope of a calibration curve and suffers from its failure to take into account the precision of individual measurements.
 - (B) Analytical sensitivity refers to the slope of a calibration curve divided by the standard deviation of the measurement and is not concentration dependent.
 - (C) Detection limit is the minimum concentration or mass of an analyte that can be detected at a known confidence level.
 - (D) Limit of quantitation is the lowest concentration at which quantitative measurement can be made, and is generally taken to be three times the standard deviation of repetitive blank measurement.
 - (E) Linear dynamic range of an analytical method refers to the analyte concentration ranging from detection limit to the limit of linearity.
- 2. Which of the following statement about pH indicators is/are correct?
 - (A) The color transition range of an appropriate indicator must fall within the steep equivalence point break of the titration curve.
 - (B) Considering the capability to identify color changes of the pH indicator with naked eyes, the difference between the pK_a of the indicator and the pH of the equivalence point must be within ± 0.1
 - (C) The color change of a pH indicator is typically insensitive to the presence of colloidal particles.
 - (D) To indicate the equivalence point for the titration of a weak base with a strong acid, methyl orange (pK_a 3.46) is a better choice than thymolphthalein (pK_a 9.90).
 - (E) The pH interval over which a given indicator exhibits a color change is significantly influenced by the ionic strength of the medium and the presence of organic solvent.
- 3. Which of the following statements about reported models to describe electrical double layers of colloids in aqueous solution is/are correct?
 - (A) In Gouy-Chapman model, the charge distribution of ions from the charged surface of colloids can be described with Maxwell-Boltzmann distribution.
 - (B) In Helmholtz model, the potential distribution in the solution is an exponential function of the distance from the colloid surface.
 - (C) In Stern model, some ions adhere to the charged surface as suggested by Helmholtz, while some form a Gouy-Chapman diffuse layer.
 - (D) In Helmholtz model, the electrical double layer is described as a capacitor-like structure, which consists of two layers of charges with opposite polarity formed at the solid-liquid interface.
 - (E) The Gouy-Chapman model overemphasizes the rigidity of the local solution located at the solid-liquid interface.
- 4. An ion-selective electrode is applied to determine the concentration of a standard calcium (Ca²⁺)

編號: 51

國立成功大學 107 學年度碩士班招生考試試題

系 所:化學系 考試科目:分析化學

考試日期:0206,節次:4

第2頁,共7頁

solution. The determined concentration displays a relative error of 3.9%. What is the corresponding error in potential measurement recorded in this measurement?

- (A) 0.1 mV
- (B) $0.5 \,\mathrm{mV}$
- (C) 1.0 mV
- (D) 1.5 mV
- (E) 2.0 mV
- 5. Which of the following statements about a reference electrode in electrochemical system is/are correct?
 - (A) The electrode must have a well-known and stable equilibrium potential.
 - (B) An ideal reference electrode displays almost infinite charge transfer rate.
 - (C) An ideal polarized electrode is a good candidate as a reference electrode.
 - (D) For a reference electrode, there is no electrode reaction can occur with a fairly wide applied potential.
 - (E) The potential of an ideal reference electrode can be maintained at its equilibrium potential with the application of even a large current density.
- 6. Calculate "y" including the absolute standard deviation and round the result to include only significant

figures.
$$y = \frac{187(\pm 6) - 89(\pm 3)}{1240(\pm 1) + 57(\pm 8)}$$

- (A) 0.075559(±0.005200)
- (B) 0.07556(±0.00382)
- (C) 0.0756(±0.0038)
- (D) $0.076(\pm 0.005)$
- (E) 0.08(±0.01)
- 7. Calculate E⁰ for the following process $Cu(NH_3)_4^{2+} + e^- \leftrightarrow Cu(NH_3)_2^{+} + 2NH_3$, given that

$$Cu^+ + 2NH_3 \leftrightarrow Cu(NH_3)_2^+$$

$$K_f = 7.2 \times 10^{10}$$

$$Cu^{2+} + 4NH_3 \leftrightarrow Cu(NH_3)_4^{2+}$$

$$K_f = 5.62 \times 10^{11}$$

- (A) 0.21 V
- (B) 0.11 V
- (C) 0.22 V
- (D) 0.09 V
- Œ) 0.25 V
- 8. For the following solutions, which sequence is/are correct to describe their relative buffer capacity?
 - a. 5 mL of 2.0 M $C_2H_5COOH + 10$ mL of 0.1 M C_2H_5COON
 - b. 25 mL of 2.0 M $C_2H_5COOH + 10$ mL of 0.5 M C_2H_5COONa
 - c. 20 mL of 2.50 M C₂H₅COOH + 50 mL of 0.96 M C₂H₅COONa
 - d. 10 mL of 1.0 M C₂H₅COOH + 4 mL of 2.4 M C₂H₅COONa

系 所:化學系 考試科目:分析化學

考試日期:0206,節次:4

第3頁,共7頁

51

編號:

- (A) b>a>c>d
- (B) a>c>b>d
- (C) c>b>d>a
- (D) b>c>a>d
- (E) c>d>b>a
- 9. About the following titrations curves, which statements is/are correct?

- (A) A is a typical titration curve for a strong acid titrated with a strong base, while D is related to a weak acid titrated by a strong base.
- (B) B could be the curve of an acid mixture composed of 0.75 M CH₃COOH and 0.5 M H₂S titrated by KOH
- (C) C could be the titration curve of Na₂C₂O₄ with HCl.
- (D) E could be the curve of a base mixture composed of equal amount of NaHCO₃ and Na₂CO₃ titrated by HCl.
- (E) F could be the titration curve of NH₄CN with HCl.
- 10. Which of the following is/are not factors that influence the band broadening observed in atomic spectrum?
 - (A) Doppler effect
 - (B) Pressure effect
 - (C) Uncertainty effect
 - (D) Solvent effect
 - (E) Temperature effect
- 11. Which of the following statements is true about instrumental noise?
 - (A) Thermal noise is caused by thermal agitation of charge carries in components of an instrument and does not exist when there is no current flowing in the instrument.

編號: 51

系 所:化學系

考試科目:分析化學 考試日期:0206,節次:4

第4頁,共7頁

- (B) Environmental noise is a combination of different forms of noise that arise from the surroundings.
- (C) Jonson noise can be reduced by cooling the instrument.
- (D) Shot noise belongs to white noise and can only be decreased by reducing the bandwidth of signal.
- (E) The magnitude of flicker noise is proportional to signal frequency and thus shows significantly influence on the measurement with high frequency.
- 12. Consider the experimental data collected for separation on four columns identical in all ways except for the size of the stationary phase particles. Which of the following statements is/are true?
 - (A) The particle size of the stationary phase of these four columns shows the following relationship: A<B<C<D
 - (B) Column D would show the best resolution for two similar solutes.
 - (C) The relationship between plate height and the flow rate can be described with Van Deemter equation.

- (E) The relationship between particle size and plate height can be described with Snyder equation.
- 13. The ion-accelerating voltage in a particular quadrupole mass spectrometer is 5.00 V. How long would it take a singly charged cyclohexane ion to travel the 15.0 cm length of the rod assembly? Assume that the initial velocity of the ion in the z direction is zero.
 - (A) 31.3 μs
 - (B) 44.3 μs
 - (C) 62.6 µs
 - (D) 54.3 µs
 - (E) $22.4 \, \mu s$

Part II. Problem-solving and short answer questions. Please show all work, steps, units and explanation if applicable. (35%)

- 1. The figure shown below describes the changes of concentration equilibrium constants as a function of electrolyte concentration.
 - K'sp: concentration-based solubility product of BaSO4
 - K'a: concentration-based dissociation constant of HCl
 - K'w: concentration-based ionic product of H2O
 - (A) Explain why these concentration equilibrium constants change with the concentration of NaCl. (5 points)
 - (B) What will happen to these curves if the solution electrolyte, NaCl, is replaced with Na2SO4? (5 points)

系 所:化學系 考試科目:分析化學

考試日期:0206,節次:4

第5頁,共7頁

編號: 51

2. For the following operational amplifier circuits, "derive" equations to show the relationship between the input (v_i) and output (v_o) signals. (10 points)

3. The sodium salt of 2-quinizarinsulfonic acid (NAQ) forms a complex with Al³⁺ that absorbs radiation strongly at 560 nm. Use the data shown below to find the formula of the complex. (5 points)

с _Q (М)	A ₅₆₀
1.00×10^{-5}	0.131
2.00×10 ⁻⁵	0.265
3.00×10^{-5}	0.396
4.00×10^{-5}	0.468
5.00 × 10 ⁻⁵	0.487
6.00×10^{-5}	0.498
8.00×10 ⁻⁵	0.499
1.00×10^{-4}	0.500

- 4. The figure shown below describes the excitation and emission (fluorescence) spectra of anthracene.
 - (A) Please explain why the excitation spectrum and the fluorescence spectrum for a compound often appear as approximate mirror images. (5 points)

編號: 51

國立成功大學107學年度碩士班招生考試試題

系 所:化學系 考試科目:分析化學

考試日期:0206,節次:4

第6頁,共7頁

(B) Based on the excitation and emission (fluorescence) spectra, what excitation and emission wavelength should be chosen to maximized the measured fluorescence intensity. (5 points)

編號: 51

系 所:化學系

考試科目:分析化學

第7頁,共7頁

考試日期:0206,節次:4

Standard Reduction Potentials at 25°C (298 K) for Many Common Half-reactions	non Half-readi	SIM	
Half-reaction	g" (V)	Half-reaction	(<u>V</u>) &
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^{-} \rightarrow Cu$	0.34
Co3++ t- → Co2+	1.82	Hg ₂ Cl ₂ + 2e ⁻ → 2Hg + 2Cl ⁻	0.27
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	AB	0.22
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	1.70	+4H+	0.20
$PbO_2 + 4H^+ + 8O_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	+ t- 1 O'+	0.16
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00
$10_4^- + 2H^+ + 2e^- \rightarrow 10_3^- + H_2O$	1.60	Fe ³⁺ + 3e ⁻ → Fe	-0.036
1	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
	1.50	$\operatorname{Sn}^{2+} + 2e^- \rightarrow \operatorname{Sn}$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	+ 2e	-0.23
Cl ₂ + 2e ⁻ → 2Cl ⁻	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$G_{2}O_{7}^{2-} + 14H^{+} + 6e^{-} \rightarrow 2Gr^{3+} + 7H_{2}O$	1.33	+ 2e ⁻ → Cd	-0.40
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^{-} \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$10_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}1_2 + 3H_2O$	1.20	Cr3+ + 3e ⁻ → Cr	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
AuCl4 + 3e → Au + 4Cl	66.0	. 2e	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	96'0	$Al^{3+} + 3e^- \rightarrow Al$	-1.66
ClO ₂ + e ⁻ → ClO ₂ -	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2 \mathrm{Hg}^{2+} + 2 \mathrm{e}^- \rightarrow \mathrm{Hg}_2^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	2.37
Ag ⁺ + e ⁻ → Ag	0.80	$L_3^{3+} + 3e^- \rightarrow L_3$	-2.37
$H_{\rm B2}^{2+} + 2e^- \rightarrow 2H_{\rm B}$	0.80	Na++e- → Na ·	-2.71
Fe ³⁺ + e ⁻ → Fe ²⁺	0.77	$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2\epsilon^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \downarrow K$	-2.92
$I_2 + 2\mathfrak{e}^- \to 2I^-$	0.54	Li+ + e- → Li	-3.05
Cu+ + e- ↑ Cu	0.52		