國立成功大學 113學年度碩士班招生考試試題

編 號: 46

系 所: 化學系

科 目:無機化學

日期:0202

節 次:第3節

備 註:不可使用計算機

國立成功大學 113 學年度碩士班招生考試試題

編號: 46 系 所: 化學系

考試科目:無機化學

考試日期:0202,節次:3

第1頁,共5頁。

※考生請注意:本試題不可使用計算機。請於答案卷作答,於本試題紙上作答者,不予計分。

- 一、單選題: (50分·每題 2.5 分)
 - 1. Which breakthrough was awarded the Nobel Prize in Chemistry in 2023?
 - (A) Development of ultra-high-resolution electron microscopy for biological systems
 - (B) Discovery and synthesis of quantum dots
 - (C) Discovery of a new class of antibiotics targeting antibiotic-resistant bacteria
 - (D) Advancements in computational chemistry for drug discovery
 - (E) Creation of sustainable and efficient hydrogen production methods
 - 2. Give the number of geometric isomers for an octahedral compound MA₂B₂C₂. (Note: A, B, and C are monodentate ligands)
 - (A) 1 (B) 2 (C) 3 (D) 4 (E) 5
 - 3. Which of the following transition metals is a component of vitamin B₁₂?
 - (A) Co (B) Zn (C) Fe (D) Au (E) Cu
 - 4. The unit cell in a certain lattice consists of a cube formed by an anion at each corner, an anion in the center, and a cation at the center of each face. How many cations and anions does the unit cell contain?
 - (A) 3, 2
- (B) 2, 2
- (C)3,5
- (D) 3, 4
- (E) 6, 5
- 5. For the following reaction, what would be the ratio of cis to trans isomers in the product?

$$[Co(NH_3)_5Cl]^{2+} + Cl^- \rightarrow [Co(NH_3)_4Cl_2]^+ + NH_3$$

- (A) 1:1
- (B) 2:1
- (C) 1:2
- (D) 4:1
- (E) 1:4
- 6. The following graph shows the radial distribution functions of 6s, 4f, 5d, and 6p of an H atom. Which one is 4f?

國立成功大學 113 學年度碩士班招生考試試題

所: 化學系

考試科目:無機化學

考試日期:0202,節次:3

第2頁,共5頁

7. Below is the molecular structure of an efficient catalyst for the deconstruction of polyethylene (PE), what is the oxidation state of Ir?

- (A) 0
- (B) +1
- (C) + 2
- (D) +3
- (E) + 5

8. Following Question 7, what is the electron count of this complex?

- (A) 14
- (B) 16
- (C) 17
- (D) 18
- (E) 20

9. The following are the molecular orbitals of O_2 . Which one represents the π^* orbital?

10. Which property distinguishes inorganic nanoparticles from their bulk counterparts?

- (A) Increased solubility in polar solvents
- (B) Reduced surface area to volume ratio
- (C) Enhanced reactivity due to decreased surface area
- (D) Altered optical, electronic, or magnetic properties at the nanoscale
- (E) Lower sensitivity to environmental factors compared to bulk materials

11. SF₆ has A_{1g} , E_g , and T_{1u} vibrational modes. The T_{1u} mode is

- (A) IR and Raman active
- (B) IR and Raman inactive
- (C) IR active, Raman inactive (D) IR inactive, Raman active

12. Determine the Miller indices of the following plane in a unit cell.

Steps:

- (a) Read off intercepts of the plane with axes in terms of a, b, and c.
- (b) Take reciprocals of intercepts.
- (c) Reduce to integer values.
- (d) Enclose in parentheses, no commas.
- (A) (110)
- (B) (011)
- (C) (201)
- (D) (111)
- (E)(112)

編號: 46 .

國立成功大學 113 學年度碩士班招生考試試題

13. Determine the ground state free-ion term symbol ($^{2S+1}L_J$) of Cr^{2+} .

(D) $[Co(NH_3)_6]^{3+}$: 440 nm; $[Co(CN)_6]^{3-}$: 770 nm; $[CoF_6]^{3-}$: 290 nm. (E) $[Co(NH_3)_6]^{3+}$: 290 nm; $[Co(CN)_6]^{3-}$: 770 nm; $[CoF_6]^{3-}$: 440 nm.

系 所:化學系

考試科目:無機化學

考試日期:0202, 節次:3

第3頁,共5頁

(A) ⁵ D ₀	(B) ² D ₅	(C) ¹ S ₀	(D) ⁴ F ₃	(E) ⁵ D ₄	
	ine the point gro				
	ine the point gro (B) C_i (C) C_2	•		ocyclohexane.	
16. Which distortion		wing transition	metal comple	xes would you exp	ect to undergo Jahn-Teller
(A) [Zn(H ₂ O) ₆] ²⁺ (B) [f	$V_{1}(H_{2}O)_{6}]^{2+}$ (0	C) [Cu(H ₂ O) ₆] ²⁺	(D) [Mn(H ₂ O) ₆] ²⁺	(E) [Co(NH ₃) ₆] ³⁺
				lowest water excha (D) [Na(H₂O)₅]⁺	
of the n (1) oxid (5) trans	netal oxidation s	tate?) reductive elim o-bond metath	ination (3) mig		generally involve the change β-hydrogen elimination
Hint: va	molecule ethyle lence is the num 2, 0 (B) –2, 2,	ber of electron	s an atom uses	in bonding.	and formal charge for C.
waveler comple (A) [Co((B) [Co(d light for these length of absorb; $[Co(CN)_6]^{3-}$: 4: $[Co(CN)_6]^{3-}$: 2:	e solutions are rbed light. 40 nm; [CoF ₆] ³⁻ 90 nm; [CoF ₆] ³⁻	770 nm, 440 nm, an : 290 nm. : 770 nm.	$(CO(CN)_6]^{3-}$ and $(COF_6]^{3-}$. The d 290 nm. Please match the

國立成功大學 113 學年度碩士班招生考試試題

编號 46 -

糸

所: 化學系

考試科目:無機化學

考試日期:0202,節次:3

第4頁,共5頁

二、問答題: (50分)

- 21. Fe(η^5 -Cp)(η^1 -Cp)(CO)₂ is a classic organometallic complex with two Cp ligands (Cp = C₅H₅⁻ = cyclopentadienyl) having different coordination modes. Note: η^1 -Cp is written as κ^1 -Cp in the IUPAC convention. (10%)
 - (a) Draw the molecular structure of the complex. Remember to include H atoms and indicate double, triple, and aromatic bonds when necessary. (4%)
 - (b) ¹H NMR spectroscopy of the complex at room temperature only shows two signals, with one from η^5 -Cp and the other from η^1 -Cp. Is this result consistent with the molecular structure you draw in (a)? Explain why this is the case and what experiment you would do to verify your explanation. (6%)
- 22. Let's examine the molecule H₂O. (15%)
 - (a) Assume H_2O is linear, please construct a molecular orbital energy level diagram for "linear" H_2O , and you can use the D_{2h} point group for convenience. (6%)
 - (b) Similarly, construct the molecular orbital diagram for bent H₂O.

 Note: for (a) and (b), please indicate how the H group orbitals interact with the appropriate orbitals of O and label the symmetry of the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO). (6%)
 - (c) From these two MO diagrams, would you expect H₂O to be linear or bent? Explain. (3%)
- 23. Let's consider the remarkable anion [Re₂Cl₈]²⁻ that has a Re-Re metal-metal bond. (10%)
 - (a) Sketch the structure of the anion as accurately as possible (Hint: is the conformation eclipsed or staggered?) (3%)
 - (b) Give the oxidation state and d-electron count for Re. (2%)
 - (c) Estimate the bond order of the Re-Re metal-metal bond. Briefly explain why. (5%)
- 24. The following table gives the octahedral crystal field splitting energy (Δ_0) values for Co(III) complexes. Explain the order in terms of the σ and π -donor and σ and π -acceptor properties of the ligands. (10%)

Complex	[CoF ₆] ³⁻	[Co(H ₂ O) ₆] ³⁺	[Co(NH ₃) ₆] ³⁺	[Co(en)₃]³+	[Co(CN) ₆] ³⁻
$\Delta_{\rm oct}$ (cm ⁻¹)	13,100	17,400	22,900	24,000	33,500

25. In a face-centered cubic unit cell, please show that identical atoms occupy 74.0% of the total unit cell volume. (5%)

編號 46 國立成功大學 113 學年度碩士班招生考試試題

系 所:化學系

考試科目:無機化學

考試日期:0202,節次:3

第5頁,共5頁

おり只												
-						< Cl	< F-	< OH ⁻	< H ₂ C) < N	H₃ < en < N	$10_2^- < CN^-$
L _{spin} -	only =	$\sqrt{4S(}$	S+1) =	$\sqrt{n(n)}$	+2)							
		Table									· •	
D_{2h}	Ε	$C_2(z)$	C ₂ (y)	$C_2(x)$) i	(σ(xy)	σ(xz)	σ(yz)		h = 8	
A_{g}	1	1	1	1	1		1	1	1		x^2 , y^2 , z^2	
B _{1g}	1	1	-1	-1	1		1	-1	-1	R_{z}	ху	
B _{2g}	. 1	-1	1	-1	1		-1	1	-1	R_{y}	XZ	
B_{3g}	1	-1	-1	1	1		-1	-1	1	R_{x}	yz	
Au	1	1	1	1	-1	1	-1	-1	-1			
B _{1u}	1	1	-1	-1	1	1	-1	1	1	Z		
B _{2u}	1	-1	1	-1	-1	1	1	-1	1	У		
B_{3u}	1	-1	-1	1	-1	1	1	1	-1	×		
O _h	Ε	8C ₃	6C ₂ 6	5 <i>C</i> ₄ (=	3C ₂ =C ₄ ²)	i	6S ₄	8 <i>S</i> ₆	$3\sigma_h$	60	^T d	
A _{1g}	1	1	1	1	1	1	1	1.	1	1		
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-:	1	
E_g	2	-1	0	0	2	2	0	-1	2	0	ı	$(2z^2-x^2-y^2, x^2-y^2)$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-:	$1 (R_x, R_y, R_z)$	
T_{2g}	3	0	1	-1	-1	_. 3	-1	0	-1	1		(xy, yz, xz)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-	1.	
Azu	1	1	-1	-1	1	-1	, 1	-1	-1	1		
E _u	2	-1	0	0	2	-2	0	1	-2	C	1	
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	. (x, y, z)	
т	9	n	1	_1	_1	_3	1	n	1	_	1	

1																	2
I н I																	He
1.008																	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	v	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Хe
85.47	87.62	88.91	91,22	92.91	95.95	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	00.51	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57/71	Hf	Ta	w	Re	Os	lr .	Pt	Au	Hg	Τi	Рb	Bi	Po	At	Rn .
		37/11	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
132.9 87	137.3 88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	1	00/103		Db		Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
Fr	Ra	89/103	Rf		Sg		(270)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)
(223)	(226)		(267)	(268)	(271)	(272)	(2/0)	(2/0)	1401	1200)	1500/	1207/	12001	(200)	1-2-7		

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	(145)	150.4	152.0	157.2	158.9	162.5	164.9	167.2	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
(227)	232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)