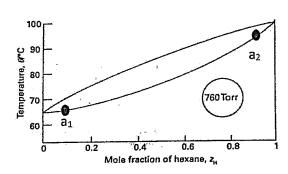
國立成功大學 114學年度碩士班招生考試試題

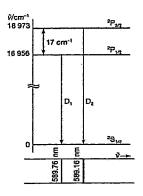
編 號: 41

系 所: 化學系

科 目:物理化學


日 期: 0211

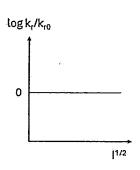
節 次:第1節


注 意: 1.不可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。

- 一、計算與簡答題: 70%; 每題 5分 (只須寫答案,答案 (數字和單位)正確才予計分, 氣體常數以 R表示,普郎克常數以 h表示,光速以 c表示,自然對數(ln)值不須算出)。
- (1). Given CH₃CO₂H(aq)
 H⁺(aq) + CH₃CO₂⁻(aq) equilibrium constant is K_a at T. What is ΔG at T for a solution in which the initial concentrations are:
 [CH₃CO₂H]₀ = 0.1 M; [CH₃CO₂⁻]₀ = 0.4 M; [H⁺]₀ = 0.5 M.
- (2). The Joule-Thomson coefficient for a real gas at 25°C and 1 atm is +0.25 K bar⁻¹. What is the final temperature of the gas when its pressure changes by -20 bar under isenthalpic conditions?
- (3). At 1.0 atm, the melting of water at its normal melting point has $\Delta V = -1.6 \text{ cm}^3 \text{ mol}^{-1}$ and $\Delta_{trs}H = 5.460 \text{ kJ}$ mol⁻¹. Please calculate the value of $(\delta \mu(l)/\delta T)_p (\delta \mu(s)/\delta T)_p$.
- (4). Please estimate minimum number of the theoretical plates is required to purification from a₁ composition to a composition with hexane molar fraction higher than a₂.

- (5). Calculate the entropy change when n moles of argon at T_1 °C in a container of V_1 dm³ is allowed to expand to V_2 dm³ and is simultaneously heated to T_2 °C.
- (6). It is known that the spin-orbital coupling energy $\mathbf{E}_{j,\,l,\,s} = \text{hcA } l \bullet s$ and A is the spin-orbital coupling constant. From the right-hand figure, calculate the value of the spin-orbital coupling constant A.



- (7). What is the average linear momentum of a free particle describe by the wavefunction $\psi = A \exp(ikx) + B \exp(-ikx)$; (Hint: operator $p_x = \hbar/i \, d/dx$)
- (8). A photon of radiation with wavelength λ ejects an electron from a metal with a kinetic energy of E_k . Calculate the maximum wavelength of radiation capable of ejecting an electron from the metal.
- (9). Calculate the populations ratio of the J = 2 to J = 0 rotational states of HCl at T. (Hint: $E_J = hcBJ(J + 1)$; degeneracy of rotational state: 2J + 1)

- (10). Draw the cross-sectional structures of the spherical micelle and liposome of a surfactant.
- (11). Derive the rate law for the decomposition of ozone on the basis of the incomplete mechanism.

$$O_3 \Rightarrow {}^{\circ}O_2 + O \quad k_a \quad ; \quad O_2 + O \quad \Rightarrow O_3 \quad k_{a'}$$

- $O + O_3 \rightarrow O_2 + O_2$
- (12). For a reaction aA \rightarrow products, [A]₀ = 4.0 M, and the first three successive half-lives are 50, 100, and 200 min. Please calculate rate constant k.
- (13). The enzyme carbonic anhydrase catalyzes the hydration of CO_2 , in red blood cells to give bicarbonate (hydrogencarbonate) ion: $CO_2(g) + H_2O(1) \rightarrow HCO_3^-(aq) + H^+(aq)$. Based on the experimental data (where $[CO_2]$ unit in mmol dm⁻³ and reaction rate v unit in mmol dm⁻³ s⁻¹), we get the Lineweaver-Burk plot $(1/[CO_2] \text{ vs. } 1/\text{v})$ with the slope of 40.0 and the y-intercept is 4.00. Please calculate the K_M .
- (14). In the right figure shows the plot $\log(k_r/k_{r0})$ against $I^{1/2}$ for the hydrolysis reaction of $[CoBr(NH_3)_5]^{2+}$ in an aqueous solution. The slope of the straight is 0. Based on these results, what is the possible reactant for the hydrolysis of $[CoBr(NH_3)_5]^{2+}$

- 二、證明題: 30%
- (1). (a) Please briefly describe the isolation method to determine a complex rate law of a reaction: $A + 2B + 3C \Rightarrow$ product. (4%)
 - (b) Derive the diffusion coefficient $D = 1/3 \lambda c$ for a gas, (Hint: λ : mean free path; c: mean speed of gas molecule; $Z_w = \frac{1}{4} Nc$; Taylor series; net flow: 2/3) (6 %)
- (2). (a) For a black-body radiation from a source of temperature, T, is given by the Planck distribution: $\rho = (8\pi h v^3/c^3)/(\exp(hv/kT) 1)$. Use this result to prove that A/B = $(8\pi h v^3/c^3)$ and B = B' (B, B' = coefficients of simulated emission and absorption; A: Einstein coefficient of spontaneous emission). (6%)
 - (b). What are the two requirements for the laser action? (4 %)
- (3). (a). We define the fugacity as: $f = \phi p$; ϕ : fugacity coefficient. Please derive: $\ln \phi = \int_0^p \frac{Z-1}{p} dp$ (7%)
 - (b). If $\phi < 1$, use the >, = or \cdot < to finish the following comparisons.