國立成功大學 79 學年度 化學 考試(物理化學 試是	頁)共 之頁	
(1)At 25 °C the enthalpy of the graphite -> diamond phase transition is 1.896 KJ/mol, and the entropy is -3.2552 J/K mol. (a)What's the spontaneous direction at 25 °C? (b)Which direction is favored by a rise of temperature?	(6%)	
(2)At 90 °C the vapor pressure of toluene is 400 mmHg, and that of o-xylene is 150 mmHg. (a)What's the composition of a liguid mixture that will boil at 90 °C when the pressure is 0.5 atm? (b)What's the composition of the vapor produced?		
(3)The standard e.m.f. of the cell	(6%)	
Pt H ₂ (g) HCl(aq.) Hg ₂ Cl ₂ (s) Hg(l)		
was found to be 0.2699 V at 293 °K and 0.2669 V at 303 °K. Evaluate the Δ G°, Δ H° and Δ S° of the reaction at 298 °K.	İ	
and 25° of the reaction at 298°K.	(6%)	
(4)A piston exerting a pressure of 1 atm rests on the surface of water at 100 °C. The pressure is reduced infinitesimally, and as a result 10 g of water evaporate. This process absorbs 22.2 KJ of heat. What are the values of q, w, ΔU and ΔH. (Atomic weight: H=1, O=16)	(0.1)	
	(8%)	
(5)(a)C _p for an ideal gas is given by C _p =a+bT for the reversible adiabatic expansion of this gas, show that R ln(V ₁ /V ₂) = (a-R)ln(T ₂ /T ₁) + b(T ₂ -T ₁). (b)For N ₂ gas, a=27.3 JK ⁻¹ mol ⁻¹ , b=5.2x10 ⁻³ JK ⁻² mol ⁻¹ , calculate the		
temperature resulting the reversible adiabatic compression of nitrogen from a volume of 10 liters to a volume of 1 liter, the initial temperature being 25 °C.		
(6)The wave function for a hydrogenlike atom in the 1S state is found to be $\Psi = \pi^{-1/2} (\mathbb{Z}/a_0)^{3/2} e^{-\mathbb{Z}r/a_0}$	(8%)	
Calculate the expectation value of r.	(9%)	
(7) Given that $\hat{L}_x = i\hbar \{ \sin \phi (\partial/\partial \theta) + \cot \theta \cos \phi (\partial/\partial \phi) \}$ and $\hat{L}_z = -i\hbar \partial/\partial \phi$, calculate $[\hat{L}_x, \hat{L}_z]$. Does \hat{L}_x and \hat{L}_z commute with each other?	(8%)	
(8)Write down the complete ways functions for an arrange to the		
(8)Write down the complete wave functions for an excited He atom described as 1S(1)2S(2). Be sure to include all possible wave functions.	(8%)	
(9)According to the Boltzmann distribution law, the fraction f _n of the molecules in		
the n-th energy state ε_{n} is given by		
$f_n = \exp(-\epsilon_n/kT)/\sum_n \exp(-\epsilon_n/kT)$ For a harmonic oscillator having frequency $k\theta/h$, what's the overall probability that the oscillator is in its excited states. $(\pi > I)$	(8%)	
(10)Given the distribution function for the translational energy of gas molecules dN/N= $2\pi(\pi kT)^{-3/2} \epsilon_{tr}^{-1/2} \exp(-\epsilon_{tr}/kT) d\epsilon_{tr}$, find the most probable molecular		041
translation energy $arepsilon_{mp}$ for an ideal gas.	(5%)	041
(11)For the following reversible first-order reaction $A \rightleftharpoons Z$, if initially only A is k_2		
present, (a)Write the rate equation for d[A]/dt.	(4%)	
(b)Integrate the rate equation in (a).	(6%)	
(c)Derive the relation between the relaxation time and the rate constant for this reaction which is subjected to a small displacement from equilibrium.	(4%)	

國立成功大學 79 學年度 化學 考試(物理化學 試題) 第2 頁

(12)For the mechanism (1)A + B \rightleftharpoons C + D ; (2) 2C \Longrightarrow G + H, step 2 is rate- k_{-1}

determining. Given the activation energies $E_{a,1}$ =30 Kcal/mol, $E_{a,-1}$ =24 Kcal/mol, and $E_{a,2}$ =49 Kcal/mol for k_1 , k_{-1} , and k_2 , respectively.

(a)Derive the rate law for this reaction.

(5%)

(b) Calculate E_a for the overall reaction.

(4%)

(13)CsBr has the simple cubic structure. Its density at 20 °C is 4.44 g/cm³.

Calculate the unit-cell length and the nearest-neighbor distance in CsBr.

(M. Wt. of CsBr= 212.8 g/mol).

(5%)