國立成功大學 82 學年度 祝贺 考試(物理化学 試題) # 2 頁

1.(a)Show that for n moles of a perfect gas that change from V_1 at T_1 to a volume V_2 at T_2 (S=f(T,V))

$$\frac{\Delta S}{n} = \int \frac{T_2}{T_1} \frac{C_P}{T} dT - R \ln \frac{T_2}{T_1} + R \ln \frac{V_2}{V_1}$$
 (5%)

- (b) Derive an explicit equation for the reversible work of an isothermal expansion for the following case: dV is obtained from the equation of state, PV=RT+BP+CP² (5%)
- 2.As one mole CO₂(g) at 27°C expands, its Pressure falls from 3 bar to 1 bar. Calculate for this change values of ^G and ^A, if (a) CO₂ is assumed to be a perfect gas; and (b) CO₂ is a real gas obey the equation: PV=RT+BP with B=0.0428 1 mol⁻¹. (8%)
- 3.When N_2O_4 is allowed to dissociate to form NO_2 at 25°C at a total pressure of 1 bar, it is 18.5% dissociated at equilibrium, and so K=0.141. (a) If N_2 is added to the system at constant volume, will the equilibrium shift? (b) If the system is allowed to expand as N_2 is added at a constant total pressure of 1 bar. What will be the equilibrium degree of dissociation when the N_2 partial pressure is O.6 bar. (8%)
- 4.Benzene and toluene form very nearly ideal solutions. At 80°C the vapor pressure of benzene and toluene are as follows:

 benzene, P^{*at}=100.4kPa; toluene, P^{*at}=38.7kPa. (a) For a solution containing 0.5 mole fraction of benzene and 0.5 mole fraction of toluene, what is the composition of the vapor and the total vapor pressure at 80°C? (b) What is the composition of the liquid phase in equilibrium at 80°C with benzene-toluene vapor having 0.75 mole fraction benzene? (8%)
- 5. Write the Slater determinants of the ground states for a) He atom, b) $\rm H_2$ molecule, c) Li atom (9%)

038

國立成功大學 82 學年度 孤郊 考試(物理化学 試題) # 2/頁

6.
$$\psi = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a} \right)^{\frac{3}{2}} \exp \left(-\frac{Z}{a} \right)$$
 is the 1s orbital of H atom

- a) Write the probability density ρ (r) and radial probability ls density P (r) $$\rm ls$
- b) Locate the distance r where ρ (r) and P (r) have the maximum ls ls values.
- c) Write the LCAO-MO of H₂* using ψ AO. 1s (16%)
- 7. Write the following potential functions
 - a) Morse potential, b) Harmonic oscillator potential, c) Coulomb potential in H atom, d) Lennard-Jones potential. (8%)
- 8. For the elementary reaction $A \neq 2C$, show that if a system in equilibrium is subjected to a small perturbation, then $[A] [A]_{eq}$ is given by the equation following

if τ is defined as $\tau^{-1}=K_f+4K_b[C]_{eq}$ (10%)

- 9.A commonly-used rule of thumb is that rate constant will double for each 10°C rise in temperature. Assuming it applies in the vicinity of room temperature, what does this rule suggest about typical activation energies? (7%)
- 10.Estimate $^{\Delta}H^{\pm}$ and $^{\Delta}S^{\pm}$ at 600 K for the dimerization of butadiene $^{\cdot}$ 2C $_{4}H_{6}$ -> C $_{8}H_{12}$ (3-vinylcyclohexene)

 $k = 9.2 \times 10^{9} \text{ exp } (-99.12 \text{ KJ/RT}) \text{ cm}^{3} \text{ mol}^{-1}\text{S}^{-1}$ (8%)

From 440 to 660 K, the experimental rate constant is

11. The reaction A+B -> C takes place in two steps by the mechanism $2A \neq D$ followed by B+D -> A+C. The first step comes to a rapid equilibrium k_2 (Constant K_1). Derive an expression for the rate of formation of C in terms of K_1 , k_2 , [A], [B]. (8%)

039