- 1. (5%) The ionization energy of an excited hydrogen atom, $H^*(2s^1)$, is equal to that of $H^*(2p^1)$. However, the first ionization of $H^*(1S^12s^1)$ is greater than that of $H^*(1s^12p^1)$. Explain.
- 2. (9%) When an atom of helium absorbs a photon to form the excited configuration of 1s¹2s¹ (He*), a weak bond forms to give the diatomic molecule, He-He. Construct a molecular-orbital description of the bonding in this molecule.
- 3. (10%) Construct a Walsh diagram correlating the orbitals of a trigonal planar XH_3 (D_{3h}) molecule with those of a trigonal pyramidal XH_3 (C_{3v}) molecule.
- 4. (6%) (a) Discuss the relation between Pauling's scale of electronegativity of atom and valence bond theory. (b) Based on the definition of Pauling's electronegativity, how can one establish the electronegativity of all the element in the periodic table.
- 5. (10%) Consider the trigonal prismatic six-coordinate ML_6 complex with D_{3h} symmetry. Under the influence of ligand field, divide the d orbitals of the metal into sets of defined symmetry type assuming that the ligands are at the same angle relative to the xy plane as in a tetrahedral complex.
- 6. (6%) The diatomic cations, Br_2^+ and I_2^+ , are both known. Br_2^+ is red while I_2^+ is bright blue. (a) What electronic transition is probably responsible for absorption in these ions? (3%) (b) Which ion has the more closely spaced HOMO and LUMO? (3%)
- 7. (9%) Choose and explain: (a) Larger bond angle: NO_2 or O_3 ; (b) Lower boiling point: H_2S or OF_2 ; and (c) Larger K_a value: K_a for the aqueous Fe^{3+} ion or K_a for the aqueous Al^{3+} ion.
- 8. (6%) Give the spin-only magnetic moment, and the crystal field stabilization energy (CFSE) of the following complexes: (a) FeF_6^{3-} , (b) $Mn(CN)_6^{3-}$ and (c) $CoCl_4^{2-}$.

國立成功大學 83 學年度化學術術考試(宏格) 化學試題) 第 至 頁

- 9. (8%) In each of the following pairs of transition states, which would you expect to be more intense and why? (a) ${}^{3}A_{2g}$ to ${}^{3}T_{2g}$ in NiCl₆⁴- or ${}^{3}T_{1}$ to ${}^{3}T_{2}$ in NiCl₄²- and (b) The most intense d-d band in CoCl₄²- or the most intense d-d band in MnCl₄²-.
- 10. (12%) Describe in detail the bonding in the following compounds: (a) $(SN)_x$ (a "one-dimensional" conductor), (b) $B_{12}H_{12}^{2-}$ (a regular icosahedron with 20 equilateral triangles forming the faces), and (c) $Re_2Cl_8^{2-}$ (eclipsed conformation; 75Re).
- 11. (9%) Chromate ion, CrO_4^{2-} , has Td symmetry. Using the group theory method, predict the possible hybridization schemes for the chromate atom in CrO_4^{2-} . Which of these schemes would you expect to be most likely? Explain.

D _{3h}	E	2C ₂	3 3C ₂	σ _h	283	3 _v		
A ₁ '	1	1	1	1	1	1		$x^2 + y^2, z^2$
A ₂ '	1	1	- 1	1	1	- 1	R _z	
E,	2	- 1	0	2	- 1	0	(x, y)	$(x^2 - y^2, xy)$
A ₁ "	1	1	1	- 1	- 1	- 1		
A ₂ "	1	1	- 1	- 1	- 1	1	Z	
E4	2	- 1	0	- 2	1	0	(R _x , R _y)	(xz, yz)

T _d	E	8C,	3C ₂	6S	4 ^{6σ} d		
A ₁	1	1	1	1	1		$x^2 + y^2 + Z^2$
A ₂	1	1	1	- 1	- 1		
E	2	- 1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T ₁	3	0	- 1	1	- 1		
T ₂	3	0	- 1	- 1	1	(x, y, z)	(xy, xz, yz)

C _{3v}	E	2C ₃ 3σ _v		
Α ₁	1	1 1	z	$x^2 + y^2, z^2$
A ₂	1	1 -1	R _z	
E ₂	2	-1 0	(x, y)(R _x , R _v)	$(x^2 - y^2, xy)(xz, yz)$

國立成功大學引學年度化學研究修試(無機化學 試題)第3頁

12. (10%) Classify the following reactions into (I) Ligand Association (LA), (II) Ligand Dissociation (LD), (III) Oxidative Addition (OA), (IV) Reductive Elimination (RE), and (V) Migratory Insertion (MI): For example, $HRh(PPh_3)_3 \rightarrow HRh(PPh_3)_2 + PPh_3$ Answer: LD

- (a) CH_3 - $Co(CO)_4 \rightarrow CH_3(CO)Co(CO)_3$
- (b) $CH_3(CO)Co(CO)_3 + H_2 \rightarrow CH_3(CO)Co(H)_2(CO)_3$
- (c) $CH_3(CO)Co(H)_2(CO)_3 \rightarrow CH_3(CO)H + HCo(CO)_3$
- (d) $CH_3Co(H_2C=CH_2)(CO)_3 \rightarrow CH_3CH_2CH_2Co(CO)_3$
- (e) $(\eta C_5H_5)(OC)_3Mo-Mo(CO)_3(\eta C_5H_5) + H_2 \rightarrow 2 (\eta C_5H_5)(OC)_3MoH$