國立成功大學 & 學年度化學研究所考試(無機化學 試題) 第1 頁

注意:請依序作答

- 1. (20%)Provide explanation for the following: (a)Although both the ${\rm Br_3}^-$ and ${\rm I_3}^-$ ions are
- known, the F_3 does not exist \cdot Explain.
- (b) The stabilization of a half-filled d subshell is even more pronounced than that of the p subshell . Why?
- (c)Protonation of piperidine is slightly more favorable than protonation of pyridine Explain.
 (d)Ionic compounds, such as KMnO₄, can be dissolved in nonpolar solvents by adding crown ethers.
 Suggest how crown ethers make KMnO₄ soluble in nonpolar solvents •
- (e) Oxygen is more electronegative than nitrogen; fluorine is more electronegative than the other halogens. Fluoride is a stronger field ligand than the other halides, but ammonia is a stronger field ligand than water. Why?
- 2.(8%) Among the homonuclear diatomic molecules in the second period, which are paramagnetic based on MO theory and why the extent of s-p mixing decreases across this period?
- 3.(6%) The first band in photoelectron spectrum of molecule oxygen shows a progression with an interval of 1774 cm⁻¹. What does this suggest about the nature of the highest occupied MO? The vibration frequency of molecular oxygen is 1568cm⁻¹.
- 4.(6%) The ion ${\rm TeBr}_6^{2-}$ has been show to have a regular octahedral structure whereas ${\rm XeF}_6$ exhibits a non-octahedral structure. Are these results in agreement with the predictions of the

國立成功大學 84 學年度化學研究所考試(查機化學 試題) 第2 頁

Valence Shell Electron Pair Repulsion theory? If not, how can the discrepancy be explained?

5.(8%) The Co(II) complex, show below, exhibits a magnetic moment of 2.88 B.M. in CHCl₃ solution at room temperature, which is independent of concentration. As the temperature is decreased the value of u_{eff} decreases also. Suggest an explanation for these observations.

$$CH_3$$
 $CO(II) = 3d^7$
 $CO(II) = 3d^7$
 $CO(II) = 3d^7$
 $CO(II) = 3d^7$

- 6.(6%) There are two CO stretching frequencies observed in IR spectroscopy of Fe(CO)₅, but only one carbon-13 NMR resonance signal is found. Explain these observations.
- 7.(6%) Describe the Laporte selection rule and explain why the d-d transitions (or ligand-field transitions) in octahedral metal complexes may occur.
- 8.(6%) For a d⁴, octahedral complex,

 (a) determine the ground terms for high-spin and
 low-spin configurations respectively;

 (b) compare the Jahn-Teller effect for the two
 cases;
- (c) calculate LFSE and CFSE for the high-spin configuration.

國立成功大學84 學年度化學研究所考試(重機化學 試題)第3頁

- 9.(8%) Consider σ -bonding in XeF4, a molecule of D4h symmetry,
- (a) derive the possible hybrids for the Xe atom; (b) Show that the $d_{\rm XY}$ orbital is of $B_{\rm 2G}$ symmetry.

D _{4h}	E	2C.	С,	2 <i>C'</i> ,	2C"	i	25.	σ_{k}	2σ,	200,	ĺ	
A _{1x} A _{2x} B _{1x} B _{1x} B _{2x} E _x A ₁ A ₂ B ₁ E _x	1 1 1 2 1 1 1	1 -1. -1. 0 1 1 -1.	1 1 1 -2 1 1 1 1	1 -1 1 -1 0 1 -1 1 -1	1 -1 -1 0 1 -1 -1	1 1 2 -1 -1 -1 -1	1 -1 -1 -1 0 -1 -1 1	1 1 1 -2 -1 -1 -1 -1	1 -1 -1 0 -1 1 -1	1 -1 -1 1 0 -1 1 -1	R_{x} (R_{x}, R_{y}) z (x, y)	$x^{2} + y^{2}, z^{2}$ $x^{2} - y^{2}$ xy (xz, yz)

10.(6%) $[IrBr_6]^{2-}$ exhibits two sets of charge transfer absorptions one of lower intensity in the visible region of the spectrum and one of higher intensity in the ultraviolet. $[IrBr_6]^{3-}$ however, shows only the high-intensity charge transfer in the ultraviolet. Explain.

- 11.(10%) Which compound is more stable in air (答錯倒扣)
- (a) RhCp₂ or RuCp₂
- (b) $Mo(CO)_6$ or $Mo(Co)_7$
- (c) $Mo(CO)_3(PMe_3)_3$ Or $Mo(CO)_3(PPh_3)_3$
- (d) CpMo(CO)₃H or CpMo(CO)₃Cl
- (e) $Na_2Fe(CO)_4$ or $NaCo(CO)_4$
- 12. Propose a synthesis for
- (a) $HMn(CO)_5$ from $Mn_2(CO)_{10}$ (4%)
- (b) BrW(CO)₄Ph from W(CO)₆ (4%)
- (C) NaV(CO)₆ from $V(CO)_6$ (2%)