

説明: 1. 請依序作答並標明題號。

2. R=8.314 J K⁻¹mol⁻¹; h=6.626x10⁻³⁴ J s; k=1.38x10⁻²³ J K⁻¹; F=96485 C mol⁻¹ electron mass=9.11x10⁻²⁸ g; electron charge=1.602x10⁻¹⁹ C atomic weight: K=39.12 g mol⁻¹, H=1.008 g mol⁻¹

1. (a) Draw the plot of P vs. V for the Carnot cycle.

- (b) Calculate w(work) and q(heat) for each step. (10%)
- 2. Calculate the entropy of CO crystals at absolute zero. (4%)
- 3. If we assume that air contains 80% N_2 and 20% O_2 , calculate the proportion of N_2 and O_2 in water. (Henry's constant of N_2 and O_2 in water are 6.51×10^7 torr and 3.30×10^7 torr, respectively.) (6%)
- 4. (a) Calculate the average speed <v> for hydrogen molecules at 300 K.
 - (b) Calculate the partition function for a hydrogen atom at 300 K in a container of 1 m³ volume. (10%)
- 5. A reaction follows the rate law $-d[C]/dt = k[C]^{3/2}$ (8%)
 - (a) integrate the rate equation if initial concentration is [C]₀.
 - (b) Calculate the half-life time.
- 6. Bismuth (Bi) undergoes β emission (99.96%) and α emission (0.04%). If the half-life is 19.7 min, please find k_{α} and k_{β} for α emission and β emission, respectively. (6%)
- 7. Potassium (K) crystallizes with a body-centered cubic lattice. The length of the side of the unit cell is 533.3 pm. Calculate (12%)
 - (a) the density of potassium crystals.
 - (b) the distance between 200 planes.
 - (c) the radius of potassium atom.
- 8. (a) What is the de Broglie wavelength of an electron that has been accelerated through a potential difference of 100 V?
 - (b) Calculate the energy in joules (J) and in electron volts (eV) of photons of wavelength 400 nm. (8%)

請接下一頁

- 9. Please write down the Hamiltonian operator and Schrödinger equation for the hydrogen molecule (H₂). (8%)
- 10. Applying molecular theory to the ground states of N_2 and O_2 , (12%)
 - (a) write the electron configurations of N_2 and O_2 .
 - (b) predict the magnetic properties.
 - (c) predict which R_e (equilibrium distance) is larger and which D_e (dissociation energy) is larger.
- 11. (a) What is the zero-point energy in the diatomic molecules? (8%)
 - (b) How to determine the value of the zero-point energy by experiments?
- 12. (a) How does laser work? What is "Raman effect"?
 - (b) Why laser much improves the spectroscopic measurements by Raman spectrometers? (8%)