86 學年度 國立成功大學 化学研究所 無機 1七岁試題 共 2 頁 第 / 頁 (1) (6%) The resonance structures of thiocyante ion, SCN-, are shown below. Assign formal charges for each of the structures. Which one is the most important structure of the ion? Explain. $$:S \longrightarrow C \longrightarrow N:$$ $:S \longrightarrow C \longrightarrow N:$ $:S \longrightarrow C \longrightarrow N:$ (2) (6%) The energy required to break a particular bond is not always constant. Compare the N-Cl bond energies in NOCl and NCl3: NOCI $$\longrightarrow$$ NO + CI Δ H° = 158 kj/mol NCI₃ \longrightarrow NCI₂ + CI Δ H° = 375 kj/mol Why is there such a great discrepancy in the apparent N-Cl bond energies? (3) Answer the following: (30%) (a) The order of reducing abilities in aqueous solution is Li > K > Na, which is not the order expected from the relative ionization energies of these metals. Explain your answer. (b) Predict the most likely structure of PCl₂F₃ and explain your reasoning. (c) Square planar d⁸ paramagnetic complexes are extremely rare. Account for this observation with a crystal field argument. (d) Many complexes exhibiting charge transfer bands in the visible region are unstable in sunlight. Explain. (e) The high-spin d^4 complex cation $[Cr(H_2O)_6]^{2+}$ is labile, but the low-spin d^4 complex anion $[Cr(CN)_6]^{4-}$ is inert. Explain. (4) (8%) Determine the number of IR active CO stretching modes for *trans*-[Fe(CO)4Cl₂]. | D44 | E | 2C4 | C_1 | 2C1' | 2C," | i | 254 | σ_{k} | 20, | 204 | | | |------------------|---|-----|-------|------|------|----------|-----|--------------|-----|-----|--------------|----------------| | 110 | 1 | 1 | t | ı | 1 | ı | 1 | ı | t | 1 | | x2+ y2, x2 | | 411 | ! | ! | ! | -! | ! | 1 | ! | . ! | -! | -! | R, | | | B, . | 1 | I | - 1 | . 1 | -! | - 1 | [| | l | -! |] | x^2-y^2 | | B ₁ , | 2 | Ö | - 2 | - 0 | ö | ż | - 0 | - 2 | 0 | ò | (R_x, R_y) | xy
(xt, yt) | | A | ī | 1 | ī | 1 | Ī | - Ī | 1 | – Ī | -i | -1 | () | (,)., | | A 2 | 1 | 1 | 1 | 1 | 1 | -1 | | 1 | 1 | į. | 2 | | | B., | 1 | -! | : | ! | -! | -! | • | ! | -! | ! | 1 | | | B,.
E. | 2 | 0 | - 2 | - 0 | 0 | -1
-2 | 0 | - 1
2 | ò | 0 | (x, y) | | - (5) (a) Sketch all the Schlenk glassware required on a laboratory bench for a simple filtration to obtain the solid precipitate from a reaction solution. The solid is airsensitive. (6%) (b) Sketch a glove box and a glove bag, which can help synthesis and reactions of various air-sensitive compounds (4%). - (6) Give the electron count for each ruthenium atom in the following complex (4%), having recently been prepared in one laboratory at the department of chemistry, national Cheng Kung University, and explain why this complex is diamagnetic.(2%) Is it a chiral (or optically active) compound (2%)? How many IR active CO stretching bands should be observed in this complex (1%)? Give one reason to your prediction without referring to Group theory or using a Character Table (1%). - (7) (a) The anion [Ni₂Cl₈]²- belongs to the C_{2h} point group. Each nickel has a square pyramidal arrangement of ligands, and there are no Ni-Ni bonds. Sketch the structure (3%). (b) Describe and sketch simple structures for (i) tetragonal (Jahn-Teller) distortion, (ii) Trigonal distortion, and (iii) Twist distortion of an idealized octahedral complex [ML₆] (9%). - (8) (a) Write the electron configuration of the N_2 and O_2 molecules (2%) and calculate the bond order for each molecule (2%). Compare the N-N or O-O bond lengths: which one is shorter (2%). (b) Why is O_2 more chemically reactive than N_2 ? (2%) - (9) It is not the *trans*-[PtCl₂(NH₃)₂] but *cis*-[PtCl₂(NH₃)₂] as the active antitumor reagent. Both chloride anions, rather than the NH₃ ligands, of this complex are known to be displaced during the antitumor process. When the NH₃ is replaced by a phosphorus compound, the activity is sharply dropped down. It is also found that the activity is cis-[PtCl₂(NH₃)₂] < cis-[PtCl₂(RNH₂)₂] < cis-[PtCl₂(NR₃)₂]. Explain why the active isomer is cis-[PtCl₂(NH₃)₂] but not trans-[PtCl₂(NH₃)₂] (4%) and explain the reduced activity in other substituted complexes such as cis-[PtCl₂(NR₃)₂] (6%).