

1. Which of the following heteroatom-containing compounds is not an aromatic? (單選, 3%)

2. Arrange the following compound a, b, c, and d in order of decreasing reactivity toward solvolysis with ethanol. (草選, 3%)

A. b>c>d>a B. b>a>c>d C. a>d>c>b D. a>c>b>d E. c>b>a>d

3. Arrange the following compound a, b, c, and d in order of decreasing reactivity toward sulfonation.

(單選, 3%) A. a>d>c>b B. d>c>a>b C. b>c>d>a D. d>b>c>a E. d>a>b>c

4. Which one of the following compounds will not undergo decarboxylation on heating. (單選, 3%)

5. Arrange the following compound a, b, c, and d in order of decreasing basicity. (單選, 3%)

$$\begin{array}{c|c} & & \text{OH} & & \text{OH} \\ \hline & & \text{NH}_2 & & \text{NH}_2 & & \\ \hline & & & \text{b} & & \text{c} & & \text{d} & \text{H} \end{array}$$

A. a>d>b>c B. a>d>c>b C. d>c>a>b D. d>a>c>b E. c>b>d>a

- 6. Draw structures of the following compounds.
- (a) 2-chloroethyl benzoate (3 %) (b) trans-3-phenylcyclohexylamine (3%)
- 7. (a) Draw the major product formed when the optically active compound shown below is treated with H_2SO_4/H_2O . (3%) (b) Is the product optically active? Why or Why not? (3%)

(背面仍有題目,請繼續作答)

8. Complete the following reactions by adding the appropriate reagents and products. (各3%, 共45%)

i)
$$\xrightarrow{a}$$
 b \xrightarrow{c} \xrightarrow{OTs} \xrightarrow{d}

iii)
$$CH_{3}O \longrightarrow CH_{3}CH_{2}COCI$$

$$AlCl_{3}$$

$$1. NBS, heat$$

$$2. KOH/EtOH$$

$$k \longrightarrow CH_{3}O \longrightarrow OH$$

$$iv)$$

$$Br \longrightarrow 1. Mg/Et_{2}O \longrightarrow m \longrightarrow Br_{2} \longrightarrow n \xrightarrow{KOH} O$$

$$3. H_{3}O^{+} \longrightarrow OH$$

- 9. The 1 H NMR spectrum of compound A ($C_{15}H_{14}O$) shows only two signals: a multplet at 7.15 and a singlet at 3.55 ppm in a 5:2 ratio. The IR spectra has no absorption in the 3200-4000 cm $^{-1}$ region but a strong peak can be found near 1700 cm $^{-1}$. Compound A reacts with NaBH₄ followed by acidification to give compound B of the molecular formular $C_{15}H_{16}O$. The reaction of A with CH₃MgBr, and then with H_3O^+ gives C, with a molecular formula of $C_{16}H_{18}O$. Suggest structure for A-C. (&3%, &9%)
- 10. Compound A of the molecular formula $C_{10}H_{12}O$ exhibits the following resonances in its 1H NMR spectrum: 2.05 (s, 3H), 2.60-2.90 (two overlapping triplets, 4H), 7.20 (multiplet, 5H) ppm. Its ^{13}C NMR spectrum shows eight distinct signals- three between 20 and 50 ppm, four between 120 and 145 ppm, and a single peak at 207 ppm. Treatment of A with I_2/OH gives a yellow precipitate and reaction with $K_2Cr_2O_2/H_2SO_4/H_2O$ yields benzoic acid. Suggest a structure for A and justify your answer. (6%)
- 11. When the epoxide shown below was treated with CH_3O^- followed by an acidic workup, a compound of the molecular formula $C_6H_{12}O_3$ was formed as the major product. Its ¹H NMR spectrum exhibited signals at 1.07 (t, 3H), 2.60 (q, 2H), 3.41 (s, 6H), 4.50 (s, 1H) ppm, and a strong adsorption was seen at 1730 cm⁻¹ in its IR spectrum. Propose a structure for this molecule and provide a reaction mechanism to $CH_3O^ C_6H_{12}O_3$ account for its formation. (7%)
- 12. Provide a mechanistic explanation for the reaction. (6%)

